975 resultados para Electric power systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional internal combustion engine vehicles are a major contributor to global greenhouse gas emissions and other air pollutants, such as particulate matter and nitrogen oxides. If the tail pipe point emissions could be managed centrally without reducing the commercial and personal user functionalities, then one of the most attractive solutions for achieving a significant reduction of emissions in the transport sector would be the mass deployment of electric vehicles. Though electric vehicle sales are still hindered by battery performance, cost and a few other technological bottlenecks, focused commercialisation and support from government policies are encouraging large scale electric vehicle adoptions. The mass proliferation of plug-in electric vehicles is likely to bring a significant additional electric load onto the grid creating a highly complex operational problem for power system operators. Electric vehicle batteries also have the ability to act as energy storage points on the distribution system. This double charge and storage impact of many uncontrollable small kW loads, as consumers will want maximum flexibility, on a distribution system which was originally not designed for such operations has the potential to be detrimental to grid balancing. Intelligent scheduling methods if established correctly could smoothly integrate electric vehicles onto the grid. Intelligent scheduling methods will help to avoid cycling of large combustion plants, using expensive fossil fuel peaking plant, match renewable generation to electric vehicle charging and not overload the distribution system causing a reduction in power quality. In this paper, a state-of-the-art review of scheduling methods to integrate plug-in electric vehicles are reviewed, examined and categorised based on their computational techniques. Thus, in addition to various existing approaches covering analytical scheduling, conventional optimisation methods (e.g. linear, non-linear mixed integer programming and dynamic programming), and game theory, meta-heuristic algorithms including genetic algorithm and particle swarm optimisation, are all comprehensively surveyed, offering a systematic reference for grid scheduling considering intelligent electric vehicle integration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the increasing utilization of electric vehicles (EVs), transportation systems and electrical power systems are becoming increasingly coupled. However, the interaction between these two kinds of systems are not well captured, especially from the perspective of transportation systems. This paper studies the reliability of integrated transportation and electrical power system (ITES). A bidirectional EV charging control strategy is first demonstrated to model the interaction between the two systems. Thereafter, a simplified transportation system model is developed, whose high efficiency makes the reliability assessment of the ITES realizable with an acceptable accuracy. Novel transportation system reliability indices are then defined from the view point of EV’s driver. Based on the charging control model and the transportation simulation method, a daily periodic quasi sequential reliability assessment method is proposed for the ITES system. Case studies based on RBTS system demonstrate that bidirectional charging controls of EVs will benefit the reliability of power systems, while decrease the reliability of EVs travelling. Also, the optimal control strategy can be obtained based on the proposed method. Finally, case studies are performed based on a large scale test system to verify the practicability of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of Electric Vehicles (EVs) will change significantly the planning and management of power systems in a near future. This paper proposes a real-time tariff strategy for the charge process of the EVs. The main objective is to evaluate the influence of real-time tariffs in the EVs owners’ behaviour and also the impact in load diagram. The paper proposes the energy price variation according to the relation between wind generation and power consumption. The proposed strategy was tested in two different days in the Danish power system. January 31st and August 13th 2013 were selected because of the high quantities of wind generation. The main goal is to evaluate the changes in the EVs charging diagram with the energy price preventing wind curtailment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a methodology to achieve integrated planning and projects for secondary distribution circuits. The planning model is formulated as a mixed integer nonlinear programming problem (MINLP). In order to resolve this problem, a tabu search (TS) algorithm is used, with a neighborhood structure developed to explore the physical characteristics of specific geographies included in the planning and expansion of secondary networks, thus obtaining effective solutions as well as low operating costs and investments. The project stage of secondary circuits consists of calculating the mechanical efforts to determine the support structures of the primary and secondary distribution systems and determining the types of structures that should be used in the system according to topological and electrical parameters of the network and, therefore, accurately assessing the costs involved in the construction and/or reform of secondary systems. A constructive heuristic based on information of the electrical and topological conditions between the medium voltage and low voltage systems is used to connect the primary systems and secondary circuits. The results obtained from planning and design simulations of a real secondary system of electric energy distribution are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The system reliability depends on the reliability of its components itself. Therefore, it is necessary a methodology capable of inferring the state of functionality of these components to establish reliable indices of quality. Allocation models for maintenance and protective devices, among others, have been used in order to improve the quality and availability of services on electric power distribution systems. This paper proposes a methodology for assessing the reliability of distribution system components in an integrated way, using probabilistic models and fuzzy inference systems to infer about the operation probability of each component. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a mixed integer nonlinear programming multiobjective model for short-term planning of distribution networks that considers in an integrated manner the following planning activities: allocation of capacitor banks; voltage regulators; the cable replacement of branches and feeders. The objective functions considered in the proposed model are: to minimize operational and investment costs and minimize the voltage deviations in the the network buses, subject to a set of technical and operational constraints. A multiobjective genetic algorithm based on a Non-Dominated Sorting Genetic Algorithm (NSGA-II) is proposed to solve this model. The proposed mathematical model and solution methodology is validated testing a medium voltage distribution system with 135 buses. © 2013 Brazilian Society for Automatics - SBA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a load frequency control scheme using electric vehicles (EVs) to help thermal turbine units to provide the stability fluctuated by load demands. First, a general framework for deriving a state-space model for general power system topologies is given. Then, a detailed model of a four-area power system incorporating a smart and renewable discharged EVs system is presented. The areas within the system are interconnected via a combination of alternating current/high voltage direct current links and thyristor controlled phase shifters. Based on some recent development on functional observers, novel distributed functional observers are designed, one at each local area, to implement any given global state feedback controller. The designed observers are of reduced order and dynamically decoupled from others in contrast to conventional centralized observer (CO)-based controllers. The proposed scheme can cope better against accidental failures than those CO-based controllers. Extensive simulations and comparisons are given to show the effectiveness of the proposed control scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an improved stability criterion for load frequency control (LFC) of time-delay power systems including AC/HVDC transmission links and EVs. By employing a novel refined Jensen-based inequality, an improved stability condition is derived in terms of feasible linear matrix inequalities (LMIs) which allow us to compute the maximal upper bounds of time-delay ensuring stability of the LFC scheme equipped with an embedded controller. Cases studies here are implemented for LFC scheme of a two-area power system, which is interconnected by parallel (AC/HVDC) links, with embedded proportional integral (PI) controller for discharged EVs. The relationships between the parameters of PI controller, supplementary control of HVDC links and delay margins of the LFC scheme are also discussed. As a consequence of facts, the results of delay margins can be used as a guideline to tune PI controller and set-up parameters for HVDC control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a H∞ dynamic output feedback control scheme for load frequency control (LFC) of interconnected power systems with multiple input timedelays. In this study, electric vehicles (EVs) are participated in the LFC to support reheated thermal power units to rapidly suppress load and frequency fluctuations. A mathematical model of an interconnected power system is first introduced. This model takes into consideration of the different time delays in control inputs; specifically the communication/information delays between the control center and the fleet of EVs. We then derive stabilization conditions in terms of feasible linear matrix inequalities (LMIs) for the proposed system and develop an effective algorithm to parameterize H∞ controllers ensuring stability of the closed-loop system with H∞ performance. Extensive simulations are given to show the effectiveness of the proposed control method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, for the first time, electric vehicles are used for both the primary and secondary frequency controls to support power plants to rapidly suppress fluctuations in the system frequency due to load disturbances. Via networked control and wide-area communication infrastructures, multiple interval time-varying delays exist in the communication channels between the control center, power plant, and an aggregation of electric vehicles. By coordinating batteries’ state of charge control, the behaviors of the vehicle owners and the uncertainties imposed by the changes of the batteries’ state of charge are taken intoconsideration. A power system model incorporating multiple time-varying delays and uncertainties is first proposed. Then, a robust static output feedback frequency controller is designed to guarantee the resulting closed-loop system stable with an H∞ attenuation level. By utilizing a novel integral inequality, namely refined-Jensen inequality, and an improved reciprocally convex combination, the design conditions are formulated in terms of tractable linear matrix inequalities which can be efficiently solved by various computational tools. The effectiveness of the proposed control scheme is verified by extensive simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Computer simulation is a versatile and commonly used tool for the design and evaluation of systems with different degrees of complexity. Power distribution systems and electric railway network are areas for which computer simulations are being heavily applied. A dominant factor in evaluating the performance of a software simulator is its processing time, especially in the cases of real-time simulation. Parallel processing provides a viable mean to reduce the computing time and is therefore suitable for building real-time simulators. In this paper, we present different issues related to solving the power distribution system with parallel computing based on a multiple-CPU server and we will concentrate, in particular, on the speedup performance of such an approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integration of large amount of wind power into a power system imposes a new challenge for the secure and economic operation of the system. It is necessary to investigate the impacts of wind power generation on the dynamic behavior of the power system concerned. This paper investigates the impacts of large amount of wind power on small signal stability and the corresponding control strategies to mitigate the negative effects. The concepts of different types of wind turbine generators (WTGs) and the principles of the grid-connected structures of wind power generation systems are first briefly introduced. Then, the state-of-the-art of the studies on the impacts of WTGs on small signal stability as well as potential problems to be studied are clarified. Finally, the control strategies on WTGs to enhance power system damping characteristics are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrification of vehicular systems has gained increased momentum in recent years with particular attention to constant power loads (CPLs). Since a CPL potentially threatens system stability, stability analysis of hybrid electric vehicle with CPLs becomes necessary. A new power buffer configuration with battery is introduced to mitigate the effect of instability caused by CPLs. Model predictive control (MPC) is applied to regulate the power buffer to decouple source and load dynamics. Moreover, MPC provides an optimal tradeoff between modification of load impedance, variation of dc-link voltage and battery current ripples. This is particularly important during transients or starting of system faults, since battery response is not very fast. Optimal tradeoff becomes even more significant when considering low-cost power buffer without battery. This paper analyzes system models for both voltage swell and voltage dip faults. Furthermore, a dual mode MPC algorithm is implemented in real time offering improved stability. A comprehensive set of experimental results is included to verify the efficacy of the proposed power buffer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, electric propulsion systems have increasingly been used in land, sea and air vehicles. The vehicular power systems are usually loaded with tightly regulated power electronic converters which tend to draw constant power. Since the constant power loads (CPLs) impose negative incremental resistance characteristics on the feeder system, they pose a potential threat to the stability of vehicular power systems. This effect becomes more significant in the presence of distribution lines between source and load in large vehicular power systems such as electric ships and more electric aircrafts. System transients such as sudden drop of converter side loads or increase of constant power requirement can cause complete system instability. Most of the existing research work focuses on the modeling and stabilization of DC vehicular power systems with CPLs. Only a few solutions are proposed to stabilize AC vehicular power systems with non-negligible distribution lines and CPLs. Therefore, this paper proposes a novel loop cancellation technique to eliminate constant power instability in AC vehicular power systems with a theoretically unbounded system stability region. Analysis is carried out on system stability with the proposed method and simulation results are presented to validate its effectiveness.