990 resultados para Electric parameters
Resumo:
Electric activity of the heart consists of repeated cardiomyocyte depolarizations and repolarizations. Abnormalities in repolarization predispose to ventricular arrhythmias. In body surface electrocardiogram, ventricular repolarization generates the T wave. Several electrocardiographic measures have been developed both for clinical and research purposes to detect repolarization abnormalities. The study aim was to investigate modifiers of ventricular repolarization with the focus on the relationship of the left ventricular mass, antihypertensive drugs, and common gene variants, to electrocardiographic repolarization parameters. The prognostic value of repolarization parameters was also assessed. The study subjects originated from a population of more than 200 middle-aged hypertensive men attending the GENRES hypertension study, and from an epidemiological survey, the Health 2000 Study, including more than 6000 participants. Ventricular repolarization was analysed from digital standard 12-lead resting electrocardiograms with two QT-interval based repolarization parameters (QT interval, T-wave peak to T-wave end interval) and with a set of four T-wave morphology parameters. The results showed that in hypertensive men, a linear change in repolarization parameters is present even in the normal range of left ventricular mass, and that even mild left ventricular hypertrophy is associated with potentially adverse electrocardiographic repolarization changes. In addition, treatments with losartan, bisoprolol, amlodipine, and hydrochlorothiazide have divergent short-term effects on repolarization parameters in hypertensive men. Analyses of the general population sample showed that single nucleotide polymorphisms in KCNH2, KCNE1, and NOS1AP genes are associated with changes in QT-interval based repolarization parameters but not consistently with T-wave morphology parameters. T-wave morphology parameters, but not QT interval or T-wave peak to T-wave end interval, provided independent prognostic information on mortality. The prognostic value was specifically related to cardiovascular mortality. The results indicate that, in hypertension, altered ventricular repolarization is already present in mild left ventricular mass increase, and that commonly used antihypertensive drugs may relatively rapidly and treatment-specifically modify electrocardiographic repolarization parameters. Common variants in cardiac ion channel genes and NOS1AP gene may also modify repolarization-related arrhythmia vulnerability. In the general population, T-wave morphology parameters may be useful in the risk assessment of cardiovascular mortality.
Resumo:
Prebreakdown currents in a coaxial cylindrical geometry in nitrogen have been measured with and without a crossed magnetic field. The range of parameters used in the investigation are 2.6 ÿ p ÿ 14.5 torr, 50 ÿ (E/p) ÿ 420 V cm-1 torr-1, and 43.0 ÿ H/p ÿ 1185 Oe torr-1 (p is the pressure, E is the electric field, and H is the magnetic field). The initial photoelectric current is obtained by allowing photons produced in an auxiliary glow discharge to strike the cathode. Ions and electrons produced in the auxiliary discharge are prevented from reaching the main gap by suitable shielding. By modifying the Rice equation for back diffusion, the measured ionization current multiplication without a crossed magnetic field is compared with the multiplication predicted by the Townsend growth equation for nonuniform electric fields. It is observed that over the range of 50 Ã�¿ (E/P)max Ã�¿ 250 [(E/P)max is the value of E/p at the central electrode of the coaxial system] measured and calculated multiplication of current agree with each other. With a crossed magnetic field the prebreakdown currents have been measured and compared with the theoretically calculated currents using the equivalent pressure concept. Agreement between the calculated and measured currents is not satisfactory, and this has been attributed more to the uncertainty in the collision frequency data available than nonuniformity of the electric field. Sparking potentials have been measured with and without a crossed magnetic field.
Resumo:
This paper reports on the mass transport behavior of infinitely extended, continuous, and very thin metallic films under the influence of electric current. Application of direct current of high densities (> 10(8) A/m(2)) results in visible melting of thin film at only one of the electrodes, and the melt then flows towards the other electrode in a circularly symmetric fashion forming a microscale ring pattern. For the two tested thin film systems, namely Cr and Al, of thicknesses ranging from 4 to 20 nm, the above directional flow consistently occurred from cathode to anode and anode to cathode, respectively. Furthermore, application of alternating electric current results in flow of the liquid material from both the electrodes. The dependence of critical flow behavior parameters, such as flow direction, flow velocity, and evolution of the ring diameter, are experimentally determined. Analytical models based on the principles of electromigration in liquid-phase materials are developed to explain the experimental observations.
Resumo:
An analysis of the time-dependent resistive voltage and power deposition during the breakdown phase of pseudo-spark is presented. The voltage and current were measured by specially designed low-inductance capacitive voltage divider and current measuring resistor. The measured waveforms of voltage and current are digitized and processed by a computer program to remove the inductive component, so as to obtain resistive voltage and power deposition. The influence of pressure, cathode geometry and charging voltage of storage capacitors on the electrical properties in the breakdown phase are investigated. The results suggest that the breakdown phase of pseudo-spark consists of three stages. The first stage is mainly hollow cathode discharge. In the second stage, field-enhanced thermionic emission takes place, resulting in a fast voltage drop and sharp rise of discharge current. The third stage of discharge depends simply on the parameters of the discharge circuit.
Resumo:
The physico-chemical parameters of the surface water of Shiroro Lake and its major tributaries at their entry point to the reservoir were assessed over a period of eighteen months. As in other African inland water bodies there were seasonal variations in the parameters measured. The hydrological regime of the lake, precipitation chemistry, bedrock chemistry and hydro-electric power generation influence and determine the inputs of dissolved organic carbon, nutrient levels and water quality of the lake. The added nutrients to the lake by means of the major tributary rivers and inundation of surrounding areas also influence the water quality of the lake. The wet season mean values for water and air temperature were significantly (P <0.05) higher than dry season mean values in all stations. However, for pH, Dissolved oxygen and Phosphate-phosphorus the dry season mean values were higher than wet season mean values
Resumo:
The influence of composition on the structure and on the electric and magnetic properties of amorphous Pd-Mn-P and Pd-Co-P prepared by rapid quenching techniques were investigated in terms of (1) the 3d band filling of the first transition metal group, (2) the phosphorus concentration effect which acts as an electron donor and (3) the transition metal concentration.
The structure is essentially characterized by a set of polyhedra subunits essentially inverse to the packing of hard spheres in real space. Examination of computer generated distribution functions using Monte Carlo random statistical distribution of these polyhedra entities demonstrated tile reproducibility of the experimentally calculated atomic distribution function. As a result, several possible "structural parameters" are proposed such as: the number of nearest neighbors, the metal-to-metal distance, the degree of short-range order and the affinity between metal-metal and metal-metalloid. It is shown that the degree of disorder increases from Ni to Mn. Similar behavior is observed with increase in the phosphorus concentration.
The magnetic properties of Pd-Co-P alloys show that they are ferromagnetic with a Curie temperature between 272 and 399°K as the cobalt concentration increases from 15 to 50 at.%. Below 20 at.% Co the short-range exchange interactions which produce the ferromagnetism are unable to establish a long-range magnetic order and a peak in the magnetization shows up at the lowest temperature range . The electric resistivity measurements were performed from liquid helium temperatures up to the vicinity of the melting point (900°K). The thermomagnetic analysis was carried out under an applied field of 6.0 kOe. The electrical resistivity of Pd-Co-P shows the coexistence of a Kondo-like minimum with ferromagnetism. The minimum becomes less important as the transition metal concentration increases and the coefficients of ℓn T and T^2 become smaller and strongly temperature dependent. The negative magnetoresistivity is a strong indication of the existence of localized moment.
The temperature coefficient of resistivity which is positive for Pd- Fe-P, Pd-Ni-P, and Pd-Co-P becomes negative for Pd-Mn-P. It is possible to account for the negative temperature dependence by the localized spin fluctuation model and the high density of states at the Fermi energy which becomes maximum between Mn and Cr. The magnetization curves for Pd-Mn-P are typical of those resulting from the interplay of different exchange forces. The established relationship between susceptibility and resistivity confirms the localized spin fluctuation model. The magnetoresistivity of Pd-Mn-P could be interpreted in tenns of a short-range magnetic ordering that could arise from the Rudennan-Kittel type interactions.
Resumo:
Within the framework of classic electromagnetic theories, we have studied the sign of refractive index of optical medias with the emphases on the roles of the electric and magnetic losses and gains. Starting from the Maxwell equations for an isotropic and homogeneous media, we have derived the general form of the complex refractive index and its relation with the complex electric permittivity and magnetic permeability, i.e. n = root epsilon mu, in which the intrinsic electric and magnetic losses and gains are included as the imaginary parts of the complex permittivity and permeability, respectively, as epsilon = epsilon(r) + i(epsilon i) and mu = mu(r) + i mu(i). The electric and magnetic losses are present in all passive materials, which correspond, respectively, to the positive imaginary permittivity and permeability epsilon(i) > 0 and mu(i) > 0. The electric and magnetic gains are present in materials where external pumping sources enable the light to be amplified instead of attenuated, which correspond, respectively, to the negative imaginary permittivity and permeability epsilon(i) < 0 and mu(i) < 0. We have analyzed and determined uniquely the sign of the refractive index, for all possible combinations of the four parameters epsilon(r), mu(r), epsilon(i), and mu(i), in light of the relativistic causality. A causal solution requires that the wave impedance be positive Re {Z} > 0. We illustrate the results for all cases in tables of the sign of refractive index. One of the most important messages from the sign tables is that, apart from the well-known case where simultaneously epsilon < 0 and mu < 0, there are other possibilities for the refractive index to be negative n < 0, for example, for epsilon(r) < 0, mu(r) > 0, epsilon(i) > 0, and mu(i) > 0, the refractive index is negative n < 0 provided mu(i)/epsilon(i) > mu(r)/vertical bar epsilon(r)vertical bar. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Against a background of increasing energy demand and rising fuel prices, hybrid-electric propulsion systems (HEPS) have the potential to significantly reduce fuel consumption in the aviation industry, particularly in the lighter sectors. By taking advantage of both Electric Motor (EM) and Internal Combustion Engine (ICE), HEPS provide not only a benefit in fuel saving but also a reduction in take-off noise and the emission levels. This research considers the design and sizing process of a hybrid-electric propulsion system for a single-seat demonstrator aircraft, the experimental derivation of the ICE map and the EM parameters. In addition to the experimental data, a novel modeling approach including several linked desktop PC software packages is presented to analyze and optimize hybrid-electric technology for aircraft. Further to the analysis of a parallel hybrid-electric, mid-scale aircraft, this paper also presents a scaling approach for a 20 kg UAV and a 50 tonne inter-city airliner. At the smaller scale, two different mission profiles are analyzed: an ISR mission profile, where the simulation routine optimizes the component size of the hybrid-electric propulsion system with respect to fuel saving, and a maximum duration profile; where the flight endurance is determined as a function of payload weight. At the larger scale, the performance of a 50 tonne inter-city airliner is modeled, based on a hybrid-electric gas-turbine, assuming a range of electric boost powers and battery masses.
Resumo:
With a latest developed electric-sweep scanner system, we have done a lot of experiments for studying this scanner system and ion beam emittance of electron cyclotron resonance (ECR) ion source. The electric-sweep scanner system was installed on the beam line of Lanzhou electron resonance ion source No. 3 experimental platform of Institute of Modem Physics. The repetition experiments have proven that the system is a relatively dependable and reliable emittance scanner, and its experiment error is about 10%. We have studied the influences of the major parameters of ECR ion source on the extracted ion beam emittance. The typical results of the experiments and the conclusions are presented in this article.
Resumo:
The fully relaxed single-bond torsional potentials and orientation-related rotational potentials of 2,2'-bithiophene (BT) under the interaction of an external electric field (EF) constructed by point charges have been evaluated with semi-empirical AMI and PM3 calculations. The torsional potentials are sensitive to both EF strength and direction. While the EF is parallel to the molecular long axis, the torsional barrier around C-x-C-x' bond obviously rises with increasing the EF strength, whereas the relative energies of syn and anti minima show a slight change. The interaction between the EF and the induced dipole moment has been proposed to elucidate this observation. On the other hand, the relative energy difference between the syn and anti minima shows an obvious change, while the EF is perpendicular to the molecular long axis. This feature has been ascribed to the interaction between the EF and the permanent dipole moment of BT. Furthermore, conformational and orientational analyses in two dimensions have been carried out by changing the torsional and rotational angles in the different EF. The conformation and orientation of a gas-phase BT in the EF are governed by both the above factors.
Resumo:
Conformational analysis of 2,2'-bithiophene (BT) under the influence of an electric field (EF) constructed by point charges has been performed by using semi-empirical Austin Model 1 (AM1) and Parametric model number 3 (PM3) calculations. When the EF perpendicular to the molecular conjugation chain is applied, both AM1 and PM3 calculations show an energy increase of the anti-conformation. AM1 predicts that the global minimum shifts to syn-conformation when the EF strength is larger than a critical value. and PM predicts that the local minimum in anti-conformation vanishes. This kind of EF effect has been ascribed to the EF and dipole moment interaction.
Resumo:
Two new compounds with the formula of CdYMWO7 (M = Cr, Mn) were prepared by solid state reaction. They crystallized with orthorhombic structure with the cell parameters of a = 11.7200 Angstrom, b = 7.1779 Angstrom, c = 6.9805 Angstrom (CdYCrWO7), and a = 11.7960 Angstrom, b = 6.1737 Angstrom, c = 7.6530 Angstrom (CdYMnWO7). These compounds are insulators with high resistivities at room temperature. The temperature dependence of the magnetic susceptibility of CdYMWO7 (M = Cr and Mn) show Curie-Weiss Law's behaviors from 80 to 300 K. The magnetic moments at room temperature fit very well with those corresponding to Cr3+ and Mn3+ ions. This suggests that both Cr and Mn ions exist in + 3 oxidation state in CdYMWO7 compounds. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The difference between the Mossbauer parameters for EuBa2Cu3O7-x with dc electric current and those without dc electric current at 83 K has been observed. The change in isomer shift, electric quadrupole splitting and the asymmetry parameter of the electric field gradient at the Eu-151 nucleus may be caused by the movement of a mass of conduction electrons along a certain direction in the EuBa2Cu3O7-x crystal with a layered structure.
Resumo:
In this paper, the electric dichroism of cetylpyridinium bromide (CPB) has been found and studied by spectroelectrochemistry with a long optical path length thin-layer cell (LOPTLC) for the first time. The CPB molecule with a long carbon chain and a polar pyridinium ring is anisotropic in molecular configuration or in polarizability. In the electric field of a thin-layer cell, the CPB molecule reorientates along the direction of the electric field and exhibits electric dichroism, which results in the increase of absorbance of CPB in the UV-vis range. By use of in situ measurement of spectroelectrochemistry, the order parameters of long molecular axis (S = 0.845) and short molecular axis (D = 0.155) and the angle between the long axis direction of the CPB molecule and the direction normal to the electrode surface (theta = 18-degrees 44') have been determined. These data were used to describe the state of arrangement of the molecules in the solution. The reorientation of CPB molecules is the result of the interaction between the anisotropic molecules and electric field. The effects of the concentration of CPB and of the applied electric field on the electric dichroism have been investigated.
Resumo:
This paper investigates analytically the electric field distribution of graded spherical core-shell metamaterials, whose permittivity is given by the graded Drude model. Under the illumination of a uniform incident optical field, the obtained results show that the electrical field distribution in the shell region is controllable and the electric field peak's position inside the spherical shell can be confined in a desired position by varying the frequency of the optical field as well as the parameters of the graded dielectric profiles. It has also offered an intuitive explanation for controlling the local electric field by graded metamaterials.