935 resultados para Elasticity.
Resumo:
Negatively charged DNA can be compacted by positively charged dendrimers and the degree of compaction is a delicate balance between the strength of the electrostatic interaction and the elasticity of DNA. We report various elastic properties of short double-stranded DNA (dsDNA) and the effect of dendrimer binding using fully atomistic molecular dynamics and numerical simulations. In equilibrium at room temperature, the contour length distribution P(L) and the end-to-end distance distribution P(R) are nearly Gaussian, the former gives an estimate of the stretch modulus gamma(1) of dsDNA in quantitative agreement with the literature value. The bend angle distribution P(.) of the dsDNA also has a Gaussian form and allows to extract a persistence length, L-p of 43 nm. When the dsDNA is compacted by positively charged dendrimer, the stretch modulus stays invariant but the effective bending rigidity estimated from the end-to-end distance distribution decreases dramatically due to backbone charge neutralization of dsDNA by dendrimer. We support our observations with numerical solutions of the worm-like-chain (WLC) model as well as using non-equilibrium dsDNA stretching simulations. These results are helpful in understanding the dsDNA elasticity at short length scales as well as how the elasticity is modulated when dsDNA binds to a charged object such as a dendrimer or protein.
Resumo:
In this paper, we analyse three commonly discussed `flaws' of linearized elasticity theory and attempt to resolve them. The first `flaw' concerns cylindrically orthotropic material models. Since the work of Lekhnitskii (1968), there has been a growing body of work that continues to this day, that shows that infinite stresses arise with the use of a cylindrically orthotropic material model even in the case of linearized elasticity. Besides infinite stresses, interpenetration of matter is also shown to occur. These infinite stresses and interpenetration occur when the ratio of the circumferential Young modulus to the radial Young modulus is less than one. If the ratio is greater than one, then the stresses at the center of a spinning disk are found to be zero (recall that for an isotropic material model, the stresses are maximum at the center). Thus, the stresses go abruptly from a maximum value to a value of zero as the ratio is increased to a value even slightly above one! One of the explanations provided for this extremely anomalous behaviour is the failure of linearized elasticity to satisfy material frame-indifference. However, if this is the true cause, then the anomalous behaviour should also occur with the use of an isotropic material model, where, no such anomalies are observed. We show that the real cause of the problem is elsewhere and also show how these anomalies can be resolved. We also discuss how the formulation of linearized elastodynamics in the case of small deformations superposed on a rigid motion can be given in a succinct manner. Finally, we show how the long-standing problem of devising three compatibility relations instead of six can be resolved.
Resumo:
This report addresses the assessment of variation in elastic property of soft biological tissues non-invasively using laser speckle contrast measurement. The experimental as well as the numerical (Monte-Carlo simulation) studies are carried out. In this an intense acoustic burst of ultrasound (an acoustic pulse with high power within standard safety limits), instead of continuous wave, is employed to induce large modulation of the tissue materials in the ultrasound insonified region of interest (ROI) and it results to enhance the strength of the ultrasound modulated optical signal in ultrasound modulated optical tomography (UMOT) system. The intensity fluctuation of speckle patterns formed by interference of light scattered (while traversing through tissue medium) is characterized by the motion of scattering sites. The displacement of scattering particles is inversely related to the elastic property of the tissue. We study the feasibility of laser speckle contrast analysis (LSCA) technique to reconstruct a map of the elastic property of a soft tissue-mimicking phantom. We employ source synchronized parallel speckle detection scheme to (experimentally) measure the speckle contrast from the light traversing through ultrasound (US) insonified tissue-mimicking phantom. The measured relative image contrast (the ratio of the difference of the maximum and the minimum values to the maximum value) for intense acoustic burst is 86.44 % in comparison to 67.28 % for continuous wave excitation of ultrasound. We also present 1-D and 2-D image of speckle contrast which is the representative of elastic property distribution.
Resumo:
DNA nanotubes are tubular structures composed of DNA crossover molecules. We present a bottom up approach for the construction and characterization of these structures. Various possible topologies of nanotubes are constructed such as 6-helix, 8-helix and tri-tubes with different sequences and lengths. We have used fully atomistic molecular dynamics simulations to study the structure, stability and elasticity of these structures. Several nanosecond long MD simulations give the microscopic details about DNA nanotubes. Based on the structural analysis of simulation data, we show that 6-helix nanotubes are stable and maintain their tubular structure; while 8-helix nanotubes are flattened to stabilize themselves. We also comment on the sequence dependence and the effect of overhangs. These structures are approximately four times more rigid having a stretch modulus of similar to 4000 pN compared to the stretch modulus of 1000 pN of a DNA double helix molecule of the same length and sequence. The stretch moduli of these nanotubes are also three times larger than those of PX/JX crossover DNA molecules which have stretch moduli in the range of 1500-2000 pN. The calculated persistence length is in the range of a few microns which is close to the reported experimental results on certain classes of DNA nanotubes.
Resumo:
A state-based micropolar peridynamic theory for linear elastic solids is proposed. The main motivation is to introduce additional micro-rotational degrees of freedom to each material point and thus naturally bring in the physically relevant material length scale parameters into peridynamics. Non-ordinary type modeling via constitutive correspondence is adopted here to define the micropolar peridynamic material. Along with a general three dimensional model, homogenized one dimensional Timoshenko type beam models for both the proposed micropolar and the standard non-polar peridynamic variants are derived. The efficacy of the proposed models in analyzing continua with length scale effects is established via numerical simulations of a few beam and plane-stress problems. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Based on an ultrasound-modulated optical tomography experiment, a direct, quantitative recovery of Young's modulus (E) is achieved from the modulation depth (M) in the intensity autocorrelation. The number of detector locations is limited to two in orthogonal directions, reducing the complexity of the data gathering step whilst ensuring against an impoverishment of the measurement, by employing ultrasound frequency as a parameter to vary during data collection. The M and E are related via two partial differential equations. The first one connects M to the amplitude of vibration of the scattering centers in the focal volume and the other, this amplitude to E. A (composite) sensitivity matrix is arrived at mapping the variation of M with that of E and used in a (barely regularized) Gauss-Newton algorithm to iteratively recover E. The reconstruction results showing the variation of E are presented. (C) 2015 Optical Society of America
Resumo:
Active biological processes like transcription, replication, recombination, DNA repair, and DNA packaging encounter bent DNA. Machineries associated with these processes interact with the DNA at short length (<100 base pair) scale. Thus, the study of elasticity of DNA at such length scale is very important. We use fully atomistic molecular dynamics (MD) simulations along with various theoretical methods to determine elastic properties of dsDNA of different lengths and base sequences. We also study DNA elasticity in nucleosome core particle (NCP) both in the presence and the absence of salt. We determine stretch modulus and persistence length of short dsDNA and nucleosomal DNA from contour length distribution and bend angle distribution, respectively. For short dsDNA, we find that stretch modulus increases with ionic strength while persistence length decreases. Calculated values of stretch modulus and persistence length for DNA are in quantitative agreement with available experimental data. The trend is opposite for NCP DNA. We find that the presence of histone core makes the DNA stiffer and thus making the persistence length 3-4 times higher than the bare DNA. Similarly, we also find an increase in the stretch modulus for the NCP DNA. Our study for the first time reports the elastic properties of DNA when it is wrapped around the histone core in NCP. We further show that the WLC model is inadequate to describe DNA elasticity at short length scale. Our results provide a deeper understanding of DNA mechanics and the methods are applicable to most protein-DNA complexes.
Resumo:
Computational models based on the phase-field method typically operate on a mesoscopic length scale and resolve structural changes of the material and furthermore provide valuable information about microstructure and mechanical property relations. An accurate calculation of the stresses and mechanical energy at the transition region is therefore indispensable. We derive a quantitative phase-field elasticity model based on force balance and Hadamard jump conditions at the interface. Comparing the simulated stress profiles calculated with Voigt/Taylor (Annalen der Physik 274(12):573, 1889), Reuss/Sachs (Z Angew Math Mech 9:49, 1929) and the proposed model with the theoretically predicted stress fields in a plate with a round inclusion under hydrostatic tension, we show the quantitative characteristics of the model. In order to validate the elastic contribution to the driving force for phase transition, we demonstrate the absence of excess energy, calculated by Durga et al. (Model Simul Mater Sci Eng 21(5):055018, 2013), in a one-dimensional equilibrium condition of serial and parallel material chains. To validate the driving force for systems with curved transition regions, we relate simulations to the Gibbs-Thompson equilibrium condition
Resumo:
Four types of the fundamental complex potential in antiplane elasticity are introduced: (a) a point dislocation, (b) a concentrated force, (c) a dislocation doublet and (d) a concentrated force doublet. It is proven that if the axis of the concentrated force doublet is perpendicular to the direction of the dislocation doublet, the relevant complex potentials are equivalent. Using the obtained complex potentials, a singular integral equation for the curve crack problem is introduced. Some particular features of the obtained singular integral equation are discussed, and numerical solutions and examples are given.
Resumo:
On the basis of the pseudopotential plane-wave method and the local-density-functional theory, this paper studies energetics, stress-strain relation, stability, and ideal strength of beta-SiC under various loading modes, where uniform uniaxial extension and tension and biaxial proportional extension are considered along directions [001] and [111]. The lattice constant, elastic constants, and moduli of equilibrium state are calculated and the results agree well with the experimental data. As the four SI-C bonds along directions [111], [(1) over bar 11], [11(1) over bar] and [111] are not the same under the loading along [111], internal relaxation and the corresponding internal displacements must be considered. We find that, at the beginning of loading, the effect of internal displacement through the shuffle and glide plane diminishes the difference among the four Si-C bonds lengths, but will increase the difference at the subsequent loading, which will result in a crack nucleated on the {111} shuffle plane and a subsequently cleavage fracture. Thus the corresponding theoretical strength is 50.8 GPa, which agrees well with the recent experiment value, 53.4 GPa. However, with the loading along [001], internal relaxation is not important for tetragonal symmetry. Elastic constants during the uniaxial tension along [001] are calculated. Based on the stability analysis with stiffness coefficients, we find that the spinodal and Born instabilities are triggered almost at the same strain, which agrees with the previous molecular-dynamics simulation. During biaxial proportional extension, stress and strength vary proportionally with the biaxial loading ratio at the same longitudinal strain.
Resumo:
Displacement estimation is a key step in the evaluation of tissue elasticity by quasistatic strain imaging. An efficient approach may incorporate a tracking strategy whereby each estimate is initially obtained from its neighbours' displacements and then refined through a localized search. This increases the accuracy and reduces the computational expense compared with exhaustive search. However, simple tracking strategies fail when the target displacement map exhibits complex structure. For example, there may be discontinuities and regions of indeterminate displacement caused by decorrelation between the pre- and post-deformation radio frequency (RF) echo signals. This paper introduces a novel displacement tracking algorithm, with a search strategy guided by a data quality indicator. Comparisons with existing methods show that the proposed algorithm is more robust when the displacement distribution is challenging.
Resumo:
On the basis of the pseudopotential plane-wave (PP-PW) method in combination with the local density functional theory (LDFT), complete stress-strain curves for the uniaxial loading and uniaxial deformation along the [001] and [111] directions, and the biaxial proportional extension along [010] and [001] for aluminium are obtained. During the uniaxial loading, certain general behaviours of the energy versus the stretch and the load versus the stretch are confirmed; in each case, there exist three special unstressed structures: f.c.c., b.c.c., and f.c.t. for [001]; f.c.c., s.c., and b.c.c. for [111]. Using stability criteria, we find that all of these states are unstable, and always occur together with shear instability, except the natural f.c.c. structure. A Pain transformation from the stable f.c.c. structure to the stable b.c.c. configuration cannot be obtained by uniaxial compression along any equivalent [001] and [111] direction. The tensile strengths are similar for the two directions. For the higher energy barrier of the [111] direction, the compressive strength is greater than that for the [001] direction. With increase in the ratio of the biaxial proportional extension, the stress and tensile strength increase; however, the critical strain does not change significantly. Our results add to the existing ab initio database for use in fitting and testing interatomic potentials.
Resumo:
The T-stress is considered as an important parameter in linear elastic fracture mechanics. In this paper, several closed form solutions of T-stress in plane elasticity crack problems in an infinite plate are investigated using the complex potential theory. In the line crack case, if the applied loading is the remote stress or the concentrated forces, the T-stress can be derived from the basic field. Here, the basic field is defined as the field caused by the applied loading in the infinite plate without the crack. For the circular are crack, the T-stress can be abstracted from a known solution. For the cusp crack problems, the T-stress can be separated from the obtained stress solution for which the conformal mapping technique is used.