97 resultados para Eisenia-foetida


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between Cu speciation in solution and mortality and tissue Cu concentrations in Eisenia fetida was investigated. E. fetida were exposed to solutions containing 0.009, 0.049 and 0.125 mg Cu L-1 and 0, 0.15, 0.35 and 50 mg EDTA L-1. Mortalities of 100, 60, 50 and 25% were recorded in the 0.125 mg Cu L-1 solutions containing 0, 0.15, 0.35 and 50 mg EDTA L-1, respectively. Similarly tissue body burden decreased with increasing EDTA concentration. Complexation capacity of the solution increased with EDTA concentration. In the 0.125 mg Cu L-1 solution labile Cu concentration decreased with increasing EDTA concentration. These trends are attributed to complexation of free Cu ions with EDTA molecules, and the non-bioavailable nature of the resultant Cu-EDTA complex. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The uptake of metals by earthworms occurs predominantly via the soil pore water, or via an uptake route which is related to the soil pore water metal concentration. However, it has been suggested that the speciation of the metal is also important. A novel technique is described which exposes Eisenia andrei Bouche to contaminant bearing solutions in which the chemical factors affecting its speciation may be individually and systematically manipulated. In a preliminary experiment, the LC50 for copper nitrate was 0.046 mg l(-1) (95 % confidence intervals: 0.03 and 0.07 mg l(-1)). There was a significant positive correlation between earthworm mortality and bulk copper concentration in solution (R-2 = 0.88, P less than or equal to 0.001), and a significant positive increase in earthworm tissue copper concentration with increasing copper concentration in solution (R-2 = 0.97, P less than or equal to 0.001). It is anticipated that quantifying the effect of soil solution chemical speciation on copper bioavailability will provide an excellent aid to understanding the importance of chemical composition and the speciation of metals, in the calculation of toxicological parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mortality (7 and 14 d), weight change (7 and 14 d), and metal uptake of Eisenia fetida (Savigny, 1826) kept in Pb(NO3)(2)-treated Kettering loam soil in single- and multiple-occupancy (10 earthworms) test containers were determined. The number of earthworms to dry mass (g) ratio of soil was 1:50 in both sets of test containers. Lead concentrations were in the nominal range of 0 to 10,000 mg Pb/kg soil (mg/kg hereafter). Levels of mortality at a given concentration were statistically identical between the single- and multiple-occupancy tests, except at 1,800 mg/kg, at which significantly (p less than or equal to 0.05) more mortality occurred in the multiple-occupancy tests. Death of individual earthworms in the multiple-occupancy tests did not trigger death of the other earthworms in that soil. The LC50 values (concentration statistically likely to kill 50% of the population) were identical between the multiple- and single-occupancy soils: 2,662 mg/kg (2,598-2,984, 7 d) and 2,589 mg/kg (2,251-3,013, 14 d) for the multiple-occupancy soils and 2,827 mg/kg (2,443-3,168, both 7 and 14 d) for the single-occupancy soils (values in brackets represent the 95% confidence intervals). Data were insufficient to calculate the concentration statistically likely to reduce individual earthworm mass by 50% (EC50), but after 14 d, the decrease in earthworm weight in the 1,800 and 3,000 mg/kg tests was significantly greater in the multiple- than in the single-occupancy soils. At 1,000, 1,800, and 3,000 mg/kg tests, earthworm Pb tissue concentration was significantly (p less than or equal to 0.05) greater in earthworms from the multiple-occupancy soils. The presence of earthworms increased the NH3 content of the soil; earthworm mortality increased NH3 concentrations further but not to toxic levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Field populations of earthworms have shown a varied response in mortality to the fungicide carbendazim, the toxic reference substance used in agrochemical field trials. The aim of this study was to determine the influence of soil conditions as a potential cause of this variation. Laboratory acute toxicity tests were conducted using a range of artificial soils with varying soil components (organic matter, clay, pH and moisture). Batch adsorption/desorption studies were run to determine the influence of the soil properties on carbendazim behaviour. Adsorption was shown to be correlated with organic matter content and pH and this in turn could be linked to Eisenia fetida mortality, with lower mortality occurring with increased adsorption. Overall while E.fetida mortality did vary significantly between several of the soils the calculated LC50 values in the different soils did not cover a wide range (6.04-16.00 mg kg(-1)), showing that under these laboratory conditions soil components did not greatly influence carbendazim toxicity to E.fietida. (c) 2007 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While the standard models of concentration addition and independent action predict overall toxicity of multicomponent mixtures reasonably, interactions may limit the predictive capability when a few compounds dominate a mixture. This study was conducted to test if statistically significant systematic deviations from concentration addition (i.e. synergism/antagonism, dose ratio- or dose level-dependency) occur when two taxonomically unrelated species, the earthworm Eisenia fetida and the nematode Caenorhabditis elegans were exposed to a full range of mixtures of the similar acting neonicotinoid pesticides imidacloprid and thiacloprid. The effect of the mixtures on C. elegans was described significantly better (p<0.01) by a dose level-dependent deviation from the concentration addition model than by the reference model alone, while the reference model description of the effects on E. fetida could not be significantly improved. These results highlight that deviations from concentration addition are possible even with similar acting compounds, but that the nature of such deviations are species dependent. For improving ecological risk assessment of simple mixtures, this implies that the concentration addition model may need to be used in a probabilistic context, rather than in its traditional deterministic manner. Crown Copyright (C) 2008 Published by Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two control and eight field-contaminated, metal-polluted soils were inoculated with Eisenia fetida (Savigny, 1826). Three, 7, 14, 21, 28 and 42 days after inoculation, earthworm survival, body weight, cocoon production and hatching rate were measured. Seventeen metals were analysed in E.fetida tissue, bulk soil and soil solution. Soil organic carbon content, texture, pH and cation exchange capacity were also measured. Cocoon production and hatching rate were more sensitive to adverse conditions than survival or weight change. Soil properties other than metal concentration impacted toxicity. The most toxic soils were organic-poor (1-10 g C kg(-1)), sandy soils (c. 74% sand), with intermediate metal concentrations (e.g. 7150-13, 100 mg Ph kg(-1), 2970-53,400 mg Zn kg(-1)). Significant relationships between soil properties and the life cycle parameters were determined. The best coefficients of correlation were generally found for texture, pH, Ag, Cd, Mg, Pb, Tl, and Zn both singularly and in multivariate regressions. Studies that use metal-amended artificial soils are not useful to predict toxicity of field multi-contaminated soils. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that earthworms can accumulate metals. However, most accumulation studies focus on Cd-, Cu-, Pb- or Zn-amended soils, additionally few studies consider accumulation kinetics. Here we model the accumulation kinetics of 18 elements by Eisenia fetida, exposed to 8 metal-contaminated and 2 uncontaminated soils. Tissue metal concentration was determined after 3, 7,14, 21, 28 and 42 days. Metal elimination rate was important in determining time to reach steady-state tissue metal concentration. Uptake flux to elimination rate ratios showed less variation and lower values for essential than for non-essential metals. In theory kinetic rate constants are dependent only on species and metal. Therefore it should be possible to predict steady-state tissue metal concentrations on the basis of very few measurements using the rate constants. However, our experiments show that it is difficult to extrapolate the accumulation kinetic constants derived using one soil to another. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Earthworms are an essential part of the soil fauna in many global soils, represent a significant proportion of the soil biomass and are regarded as a useful indicator of soil health and quality (Edwards, 2004). They are also often the subject of inoculation programmes during the restoration of degraded lands (Butt, 1999) and the inoculation of earthworms to metal-contaminated soils has been suggested (Dickinson, 2000) largely due to the role earthworms are known to play in soil formation at such sites (Frouz et al., 2007).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seeds of Sterculia foetida were tested for germination following desiccation and subsequent hermetic storage. Whereas seeds at 10.3% moisture content were intact and provided 98% germination, further desiccation reduced germination substantially. The majority of seed coats had cracked after desiccation to 5.1% moisture content. Ability to germinate was not reduced after 12 months' hermetic storage at 10.3% and 7.3% moisture content at 15 degrees C or -18 degrees C, but was reduced considerably at 5.1%. Fungal infection was detected consistently for cracked seeds in germination tests and they did not germinate. However, almost all embryos extracted from cracked seeds germinated if first disinfected with sodium hypochlorite (1%, 5 minutes). In addition. 80 -100% of disinfected extracted embryos from cracked seeds stored hermetically for 28 d at -18 degrees C or -82 degrees C with 3.3% to 6.0% moisture content, and excised embryos stored in this way, were able to germinate. Hence. failure of the very dry seeds of Sterculia foetida to germinate was not due to embryo death from desiccation but to cracking increasing susceptibility to fungal infection upon rehydration. Cracking was associated negatively and strongly with relative humidity and appears to be a mechanical consequence of substantial differences between the isotherms of whole seeds compared with cotyledons and axes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs) were monitored over 56 days in calcareous contaminated-soil amended with either or both biochar and Eisenia fetida. Biochar reduced total (449 to 306mgkg(-1)) and bioavailable (cyclodextrin extractable) (276 to 182mgkg(-1)) PAHs, PAH concentrations in E. fetida (up to 45%) but also earthworm weight. Earthworms increased PAH bioavailability by >40%. Combined treatment results were similar to the biochar-only treatment. Earthworms increased water soluble Co (3.4 to 29.2mgkg(-1)), Cu (60.0 to 120.1mgkg(-1)) and Ni (31.7 to 83.0mgkg(-1)) but not As, Cd, Pb or Zn; biochar reduced water soluble Cu (60 to 37mgkg(-1)). Combined treatment results were similar to the biochar-only treatment but gave a greater reduction in As and Cd mobility. Biochar has contaminated land remediation potential, but its long-term impact on contaminants and soil biota needs to be assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been suggested that sources of P could be used to remediate metal-contaminated soil. The toxicity of four potential P sources, potassium hydrogen phosphate (PHP), triple superphosphate (TSP), rock phosphate (RP) and raw bone meal (RBM) to Eisenia fetida was determined. The concentration of P that is statistically likely to kill 50% of the population (LC50) for PHP, TSP and RBM was determined in OECD acute toxicity tests. 14 day LC50s expressed as bulk P concentration lay in the range 3319–4272 mg kg−1 for PHP, 3107–3590 mg kg−1 for TSP and 1782–2196 mg kg−1 for RBM (ranges present the 95% confidence intervals). For PHP and TSP mortality was significantly impacted by the electrical conductivity of the treated soils. No consistent relationship existed between mortality and electrical conductivity, soil pH and available (Olsen) P across the PHP, TSP and RBM amendment types. In RP toxicity tests mortality was low and it was not possible to determine a LC50 value. Incineration of bone meal at temperatures between 200 and 300 ◦C, pre-washing the bone meal, co-amendment with 5% green waste compost and delaying introduction of earthworms after bone meal amendments by 21 days or more led to significant reductions in the bone meal toxicity. These results are consistent with the toxicity being associated with the release and/or degradation of a soluble organic component present in raw bone meal. Bone meal can be used as an earthworm-friendly remedial amendment in metal-contaminated soils but initial additions may have a negative effect on any earthworms surviving in the contaminated soil before the organic component in the bone meal degrades in the soil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of nitrification potentials, denitrification potentials, and N removal efficiency to the introduction of earthworms and wetland plants in a vertical flow constructed wetland system was investigated. Addition of earthworms increased nitrification and denitrification potentials of substrate in non-vegetated constructed wetland by 236% and 8%, respectively; it increased nitrification and denitrification potentials in rhizosphere in vegetated constructed wetland (Phragmites austrail, Typha augustifolia and Canna indica), 105% and 5%, 187% and 12%, and 268% and 15% respectively. Denitrification potentials in rhizosphere of three wetland plants were not significantly different, but nitrification potentials in rhizosphere followed the order of C. indica > T. augustifolia > P. australis when addition of earthworms into constructed wetland. Addition of earthworms to the vegetated constructed significantly increased the total number of bacteria and fungi of substrates (P < 0.05). The total number of bacteria was significantly correlated with nitrification potentials (r = 913, P < 0.01) and denitrification potentials (r = 840, P < 0.01), respectively. The N concentration of stems and leaves of C. indica were significantly higher in the constructed wetland with earthworms (P < 0.05). Earthworms had greater impact on nitrification potentials than denitrification potentials. The removal efficiency of N was improved via stimulated nitrification potentials by earthworms and higher N uptake by wetland plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates biomass, density, photosynthetic activity, and accumulation of nitrogen (N) and phosphorus (P) in three wetland plants (Canna indica, Typha augustifolia, and Phragmites austrail) in response to the introduction of the earthworm Eisenia fetida into a constructed wetland. The removal efficiency of N and P in constructed wetlands were also investigated. Results showed that the photosynthetic rate (P n), transpiration rate (T r), and stomatal conductance (S cond) of C. indica and P. austrail were (p < 0.05) significantly higher when earthworms were present. The addition of E. fetida increased the N uptake value by above-ground of C. indica, T. augustifolia, and P. australis by 185, 216, and 108 %, respectively; and its P uptake value increased by 300, 355, and 211 %, respectively. Earthworms could enhance photosynthetic activity, density, and biomass of wetland plants in constructed wetland, resulting in the higher N and P uptake. The addition of E. fetida into constructed wetland increased the removal efficiency of TN and TP by 10 and 7 %, respectively. The addition of earthworms into vertical flow constructed wetland increased the removal efficiency of TN and TP, which was related to higher photosynthetic activity and N and P uptake. The addition of earthworms into vertical flow constructed wetland and plant harvests could be the significantly sustainable N and P removal strategy

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By the method of artificial soil pollution, an exposure experiment with different concentrations of pyrene (0, 60, 120, 240, 480, 960 microg x kg(-1)) was conducted to determine the cytochrome P450 and MDA contents and the glutathione-S-transferase (GST), superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities in earthworm gut after exposure for 1, 3, 7 and 14 days. The results indicated that within the range of test pyrene concentrations, all the biochemical indices tested differed in their sensitivity to pyrene toxicity, among which, P450 content and GST and SOD activities were most sensitive, followed by POD and CAT activities, while MDA content did not show any obvious response. Exposure duration had stronger effects than exposure dosage. In diagnosing the ecotoxicity of soil pollutant, it could be necessary to use a combined multi-time and multi-index diagnostic method to enhance the sensitivity and effectiveness of the indices adopted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The toxicity of sublethal polycyclic aromatic hydrocarbons (PAHs) levels in soils was assessed by testing their impact on expression of annetocin, a reproduction regulating gene, and translationally controlled tumor protein (TCTP), a tumorigenic response gene, in the earthworm Eisenia fetida cultured in artificial soil spiked with, phenanthrene (Phe), pyrene (Pyr), fluoranthene (Flu), or benzo(a)pyrene (Bap). Annetocin and TCTP were both up-regulated by 0.1 and 1.0 mg kg−1 benzo(a)pyrene and TCTP was down-regulated by 10.0 mg kg−1 phenanthrene. Weight loss and cocoon production of the worms were also analyzed. Only 10.0 mg kg−1 phenanthrene impacted earthworm weight loss significantly and no significant differences on cocoon production were observed. Our study indicated that the potential ecotoxicity of sublethal PAHs in soil should not be neglected and mRNA transcription level in earthworms was a more sensitive indicator of PAHs exposure than traditional indexes using cocoon production as endpoints and/or using the whole-organism as the test materials.