972 resultados para Effective notch stress
Resumo:
Tässä työssä tutkittiin kuinka eri tavoin rakenteen mallintaminen vaikuttaa laskettuun väsy-misikään. Työssä tutkittavana rakenteena toimi Sandvik Mining and Construction OY:n las-tauskoneen nostovarsi. Nostovarrelle väsytyskokeet suoritettiin Lappeenrannan teknillisen yliopiston teräsrakenteiden laboratoriossa. Työn tavoitteena oli tutkia miten eri digitaalinen valmistuksen tasot vaikuttavat hitsatulle rakenteelle saatuun kestoikään. Työssä tutkittiin myös miten todellista geometriaa voidaan hyödyntää rakenteen kestoiän arvioinnissa. Väsytyskoejärjestely mallinnettiin FE-menetelmällä, ja järjestelystä tehtiin useita malleja käyttäen solidi- ja laattaelementtejä. Malleista laskettiin väsymisiät hot spot- ja tehollisen lovijännityksen menetelmällä, ja saatuja tuloksia vertailtiin toisiinsa ja väsytyskokeen tulok-siin. Väsytyskokeessa vaurioituneista kohdista tarkemman tutkimuksen kohteena oli nosto-varren palstalevyn kärki. Hot spot-menetelmällä saadut kestoiät vaihtelivat paikoin melko paljon eri mallien välillä. Tehollisen lovijännityksen menetelmällä saaduissa tuloksissa erot olivat pienempiä mallien välillä. FE-mallin ja venymäliuskojen jännitykset poikkesivat toisistaan paikoin melko pal-jon. Todellisen hitsatun rakenteen kestoikään vaikuttaa moni asia, ja täten FE-menetelmällä las-kettu kestoikä voi poiketa huomattavasti todellisesta kestoiästä. Varsinkin hot spot-menetel-mällä tulokset voivat poiketa hyvinkin paljon todellisuudesta, mikäli jännitystila tutkitta-vassa kohdassa on moniaksiaalinen. Todellisen geometrian mallintaminen vaatii tarkkuutta, ja alkuperäisdatan tulee olla mahdollisimman tarkkaa ja riittävän suurelta alueelta, jotta malli vastaa tarpeeksi todellista.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Sediment cored within the Barbados subduction complex at Sites 541 and 542 are underconsolidated. Underconsolidation and changes in physical properties of the cored section can be related to excess pore water pressure that equals the lithostatic load at Site 542 and to major thrust faulting observed at Site 541. Apparently, the pore fluids within the subduction complex are absorbing the tectonic shock of underthrusting. Sediment sampled from the reference Site 543 on the adjacent Atlantic Plate are also underconsolidated. However, underconsolidation in Hole 543 is apparently due to the movement of excess nitrogen gas observed deeper in the hole. Excess gas was not observed at Sites 541 and 542.
Resumo:
A study of density and porosity is presented for the 1285-m-long AND-1B core recovered from a flexural moat in the McMurdo Sound (Antarctica) in order to interpret sediment consolidation in an ice-proximal location on the Antarctic shelf. Various lithologies imply environmental changes from open marine to subglacial, and are numerically expressed in high-resolution whole-core wet-bulk density (WBD). Grain density data interpolated from discrete samples range from 2.14 to 3.85 g/cm3 and are used to calculate porosity from WBD in order to avoid the 5%-15% overestimation and underestimation of porosities obtained by standard methods. The trend of porosity extends from 0.5 near the top (Pleistocene) to 0.2 at the bottom (Miocene). Porosity fluctuations in different lithologies are superimposed with 0.2-0.3 in sequences younger than ca. 1 Ma and 0.5-0.8 in Pliocene diatomites. The AND-1B porosities and void ratios of Pliocene diatomites and Pleistocene mudstones exhibit a large negative offset compared to modern lithological analogs and their consolidation trends. This offset cannot be explained in terms of the effective stress at the AND-1B site. The effective stress ranges from 0 to 4000 kPa in the upper 600 m, and reaches 13,000 kPa at the base of the AND-1B hole. We suggest an excess of effective overburden stress of ~1700 and ~6000 kPa to explain porosities in Pliocene diatomites and Pleistocene mudstones, respectively. This is interpreted as glacial preconsolidation by subsequently grounded ice sheets under subpolar to polar, followed by colder polar types of glaciations. Information on Miocene consolidation is sparse due to alteration by diagenesis.
Resumo:
The results of nine consolidation and permeability tests are presented for sediment samples from the Japan Trench and Nankai Trough sites of Leg 87. Coring and degassing disturbance results in an underconsolidated state for most Site 582 samples; however, the compressional effects of the subduction zone and high sediment accumulation rates may also play a role in causing underconsolidation. Samples collected at Site 583 exhibit similar evidence of disturbance but are slightly overconsolidated, confirming the possibility of sediment erosion at this site. The highly diatomaceous sediments at Site 584 are all overconsolidated, but the trend of overconsolidation decreases with depth. Disturbances of the diatom clay structure may increase the sediment compressibility and create this apparent overconsolidation
Resumo:
The 2011 Tohoku-Oki earthquake demonstrated that the shallowest reaches of plate boundary subduction megathrusts can host substantial coseismic slip that generates large and destructive tsunamis, contrary to the common assumption that the frictional properties of unconsolidated clay-rich sediments at depths less than View the MathML source should inhibit rupture. We report on laboratory shearing experiments at low sliding velocities (View the MathML source) using borehole samples recovered during IODP Expedition 343 (JFAST), spanning the plate-boundary décollement within the region of large coseismic slip during the Tohoku earthquake. We show that at sub-seismic slip rates the fault is weak (sliding friction µs=0.2-0.26), in contrast to the much stronger wall rocks (µs>~0.5). The fault is weak due to elevated smectite clay content and is frictionally similar to a pelagic clay layer of similar composition. The higher cohesion of intact wall rock samples coupled with their higher amorphous silica content suggests that the wall rock is stronger due to diagenetic cementation and low clay content. Our measurements also show that the strongly developed in-situ fabric in the fault zone does not contribute to its frictional weakness, but does lead to a near-cohesionless fault zone, which may facilitate rupture propagation by reducing shear strength and surface energy at the tip of the rupture front. We suggest that the shallow rupture and large coseismic slip during the 2011 Tohoku earthquake was facilitated by a weak and cohesionless fault combined with strong wall rocks that drive localized deformation within a narrow zone.
Resumo:
The mechanical behavior of the plate boundary fault zone is of paramount importance in subduction zones, because it controls megathrust earthquake nucleation and propagation as well as the structural style of the forearc. In the Nankai area along the NanTroSEIZE (Kumano) drilling transect offshore SW Japan, a heterogeneous sedimentary sequence overlying the oceanic crust enters the subduction zone. In order to predict how variations in lithology, and thus mechanical properties, affect the formation and evolution of the plate boundary fault, we conducted laboratory tests measuring the shear strengths of sediments approaching the trench covering each major lithological sedimentary unit. We observe that shear strength increases nonlinearly with depth, such that the (apparent) coefficient of friction decreases. In combination with a critical taper analysis, the results imply that the plate boundary position is located on the main frontal thrust. Further landward, the plate boundary is expected to step down into progressively lower stratigraphic units, assisted by moderately elevated pore pressures. As seismogenic depths are approached, the décollement may further step down to lower volcaniclastic or pelagic strata but this requires specific overpressure conditions. High-taper angle and elevated strengths in the toe region may be local features restricted to the Kumano transect.
Resumo:
At subduction zones, the permeability of major fault zones influences pore pressure generation, controls fluid flow pathways and rates, and affects fault slip behavior and mechanical strength by mediating effective normal stress. Therefore, there is a need for detailed and systematic permeability measurements of natural materials from fault systems, particularly measurements that allow direct comparison between the permeability of sheared and unsheared samples from the same host rock or sediment. We conducted laboratory experiments to compare the permeability of sheared and uniaxially consolidated (unsheared) marine sediments sampled during IODP Expedition 316 and ODP Leg 190 to the Nankai Trough offshore Japan. These samples were retrieved from: (1) The décollement zone and incoming trench fill offshore Shikoku Island (the Muroto transect); (2) Slope sediments sampled offshore SW Honshu (the Kumano transect) ~ 25 km landward of the trench, including material overriden by a major out-of-sequence thrust fault, termed the "megasplay"; and (3) A region of diffuse thrust faulting near the toe of the accretionary prism along the Kumano transect. Our results show that shearing reduces fault-normal permeability by up to 1 order of magnitude, and this reduction is largest for shallow (< 500 mbsf) samples. Shearing-induced permeability reduction is smaller in samples from greater depth, where pre-existing fabric from compaction and lithification may be better developed. Our results indicate that localized shearing in fault zones should result in heterogeneous permeability in the uppermost few kilometers in accretionary prisms, which favors both the trapping of fluids beneath and within major faults, and the channeling of flow parallel to fault structure. These low permeabilities promote the development of elevated pore fluid pressures during accretion and underthrusting, and will also facilitate dynamic hydrologic processes within shear zones including dilatancy hardening and thermal pressurization.
Resumo:
A presente pesquisa foi desenvolvida com o intuito de agregar alguns procedimentos ao Ensaio SPT, para se obter um maior número de parâmetros para o dimensionamento de fundações, visto que este ensaio é o tipo de investigação de subsolo mais utilizado no Brasil para este fim. Os procedimentos adicionados foram: medida de eficiência do equipamento e ensaio de arrancamento do amostrador em cada camada distinta de solo atravessado. Foram realizados nove ensaios de arrancamento do amostrador, em três furos de sondagem, nas profundidades de dois, cinco e dez metros (três camadas de solos distintas). Em um quarto furo foram realizadas duas provas de carga à compressão no amostrador (nas profundidades de dois e cinco metros) para determinação da eficiência do equipamento. Por meio destes ensaios foi possível obter: a resistência de ponta do ensaio SPT, a resistência por atrito lateral na face externa do amostrador, e a razão de atrito do ensaio SPT, que pode ser usada para a classificação de solo de modo similar ao utilizado para o ensaio de cone. Além destes resultados, neste trabalho foi também analisada a relação entre a resistência por atrito interna e externa no amostrador durante o ensaio, conhecida por a. Esta relação mostrou-se maior para a camada de solo com grande porcentagem de pedregulho e menor para a camada que apresentava maior porcentagem de argila. Foi observado também que o valor de a cresce linearmente com a razão entre o valor de NSPT e a tensão vertical efetiva na profundidade do ensaio. Os resultados deste trabalho também mostraram que o valor da razão entre a resistência de ponta do ensaio SPT (qSPT) e o valor de NSPT é único para o mesmo tipo de solo. Além disso, os valores encontrados nesta pesquisa da razão qSPT/ NSPT são próximos aos valores da razão entre a resistência de ponta do ensaio de cone e o NSPT encontrados na literatura.
Resumo:
The location of the seaward tip of a subduction thrust controls material transfer at convergent plate margins, and hence global mass balances. At approximately half of those margins, the material of the subducting plate is completely underthrust so that no accretion or even subduction erosion takes place. Along the remaining margins, material is scraped off the subducting plate and added to the upper plate by frontal accretion. We here examine the physical properties of subducting sediments off Costa Rica and Nankai, type examples for an erosional and an accretionary margin, to investigate which parameters control the level where the frontal thrust cuts into the incoming sediment pile. A series of rotary-shear experiments to measure the frictional strength of the various lithologies entering the two subduction zones were carried out. Results include the following findings: (1) At Costa Rica, clay-rich strata at the top of the incoming succession have the lowest strength (µres = 0.19) while underlying calcareous ooze, chalk and diatomite are strong (up to µres = 0.43; µpeak = 0.56). Hence the entire sediment package is underthrust. (2) Off Japan, clay-rich deposits within the lower Shikoku Basin inventory are weakest (µres = 0.13-0.19) and favour the frontal proto-thrust to migrate into one particular horizon between sandy, competent turbidites below and ash-bearing mud above. (3) Taking in situ data and earlier geotechnical testing into account, it is suggested that mineralogical composition rather than pore-pressure defines the position of the frontal thrust, which locates in the weakest, clay mineral-rich (up to 85 wt.%) materials. (4) Smectite, the dominant clay mineral phase at either margin, shows rate strengthening and stable sliding in the frontal 50 km of the subduction thrust (0.0001-0.1 mm/s, 0.5-25 MPa effective normal stress). (5) Progressive illitization of smectite cannot explain seismogenesis, because illite-rich samples also show velocity strengthening at the conditions tested.
Resumo:
It is a well known phenomenon that the constant amplitude fatigue limit of a large component is lower than the fatigue limit of a small specimen made of the same material. In notched components the opposite occurs: the fatigue limit defined as the maximum stress at the notch is higher than that achieved with smooth specimens. These two effects have been taken into account in most design handbooks with the help of experimental formulas or design curves. The basic idea of this study is that the size effect can mainly be explained by the statistical size effect. A component subjected to an alternating load can be assumed to form a sample of initiated cracks at the end of the crack initiation phase. The size of the sample depends on the size of the specimen in question. The main objective of this study is to develop a statistical model for the estimation of this kind of size effect. It was shown that the size of a sample of initiated cracks shall be based on the stressed surface area of the specimen. In case of varying stress distribution, an effective stress area must be calculated. It is based on the decreasing probability of equally sized initiated cracks at lower stress level. If the distribution function of the parent population of cracks is known, the distribution of the maximum crack size in a sample can be defined. This makes it possible to calculate an estimate of the largest expected crack in any sample size. The estimate of the fatigue limit can now be calculated with the help of the linear elastic fracture mechanics. In notched components another source of size effect has to be taken into account. If we think about two specimens which have similar shape, but the size is different, it can be seen that the stress gradient in the smaller specimen is steeper. If there is an initiated crack in both of them, the stress intensity factor at the crack in the larger specimen is higher. The second goal of this thesis is to create a calculation method for this factor which is called the geometric size effect. The proposed method for the calculation of the geometric size effect is also based on the use of the linear elastic fracture mechanics. It is possible to calculate an accurate value of the stress intensity factor in a non linear stress field using weight functions. The calculated stress intensity factor values at the initiated crack can be compared to the corresponding stress intensity factor due to constant stress. The notch size effect is calculated as the ratio of these stress intensity factors. The presented methods were tested against experimental results taken from three German doctoral works. Two candidates for the parent population of initiated cracks were found: the Weibull distribution and the log normal distribution. Both of them can be used successfully for the prediction of the statistical size effect for smooth specimens. In case of notched components the geometric size effect due to the stress gradient shall be combined with the statistical size effect. The proposed method gives good results as long as the notch in question is blunt enough. For very sharp notches, stress concentration factor about 5 or higher, the method does not give sufficient results. It was shown that the plastic portion of the strain becomes quite high at the root of this kind of notches. The use of the linear elastic fracture mechanics becomes therefore questionable.
Resumo:
Thermal cutting methods, are commonly used in the manufacture of metal parts. Thermal cutting processes separate materials by using heat. The process can be done with or without a stream of cutting oxygen. Common processes are Oxygen, plasma and laser cutting. It depends on the application and material which cutting method is used. Numerically-controlled thermal cutting is a cost-effective way of prefabricating components. One design aim is to minimize the number of work steps in order to increase competitiveness. This has resulted in the holes and openings in plate parts manufactured today being made using thermal cutting methods. This is a problem from the fatigue life perspective because there is local detail in the as-welded state that causes a rise in stress in a local area of the plate. In a case where the static utilization of a net section is full used, the calculated linear local stresses and stress ranges are often over 2 times the material yield strength. The shakedown criteria are exceeded. Fatigue life assessment of flame-cut details is commonly based on the nominal stress method. For welded details, design standards and instructions provide more accurate and flexible methods, e.g. a hot-spot method, but these methods are not universally applied to flame cut edges. Some of the fatigue tests of flame cut edges in the laboratory indicated that fatigue life estimations based on the standard nominal stress method can give quite a conservative fatigue life estimate in cases where a high notch factor was present. This is an undesirable phenomenon and it limits the potential for minimizing structure size and total costs. A new calculation method is introduced to improve the accuracy of the theoretical fatigue life prediction method of a flame cut edge with a high stress concentration factor. Simple equations were derived by using laboratory fatigue test results, which are published in this work. The proposed method is called the modified FAT method (FATmod). The method takes into account the residual stress state, surface quality, material strength class and true stress ratio in the critical place.
Resumo:
Given that the human brain is plastic and that structural alterations have been seen in monks who meditate on a regular basis, the question arises of whether these two facts are actually related. Furthermore, if this is in fact the case, would it be possible to apply these findings to the public? In this paper I will present the different conditions that induce neuroplasticity as well as give an overview of meditation and the ways that it is practiced nowadays. To this end I will argue that if monks are able to alter the structure of their brains and the brain is naturally inclined to heal itself then incorporating eastern practices, such as mindfulness and imagery, into western therapies could benefit patients suffering from mood disorders and, in particular, stress.