990 resultados para Effective dose
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Pesquisa e Desenvolvimento (Biotecnologia Médica) - FMB
Resumo:
Since discovery, computed tomography is a widely used diagnostic modality. However, this modality imparts relatively high doses to the patients and with fast technological advancement, it is necessary optimize the doses used and ensure the quality of the images through a quality assurance program. This work intended to compare Computed Tomography Dose Index (CTDIW) and effective dose with components of image quality: the Contrast-to-Noise Ratio (CNR) and Signal-to-Noise Ratio (SNR), and a quality factor (Q) deduced by the Rose model for two groups of computed tomography units. The first group was composed by equipments with 10 up to 16 slices and the second one presented 40 up to 320 slices detectors, for the protocols of head and abdomen. It was realized a comparison between different selectable parameters in the protocol of a Philips Brilliance 16, too. The results of the first group to CTDIW, effective dose, SNR and CNR showed variations of 28%, 33%, 37% and 32% respectively for head protocol, and 21%, 27%, 43% and 37% respectively for abdomen protocol. The results of the group 2 to CTDIW, effective dose, SNR and CNR showed variations of 15%, 26%, 36% and 34% respectively for the head protocol, and 8%, 13%, 50% and 60% respectively for abdomen protocol. The comparison between both groups demonstrated similar levels of doses impartation to patients though having so many different configurations, if the uncertainties associated with this measurement were considered. The results of the comparison between different parameters in the Philips Brilliance 16 scanner were in agreement with expected
Resumo:
The objective of the present study was to optimize a radiographic technique for hand examinations using a computed radiography (CR) system and demonstrate the potential for dose reductions compared with clinically established technique. An exposure index was generated from the optimized technique to guide operators when imaging hands. Homogeneous and anthropomorphic phantoms that simulated a patient's hand were imaged using a CR system at various tube voltages and current settings (40-55 kVp, 1.25-2.8 mAs), including those used in clinical routines (50 kVp, 2.0 mAs) to obtain an optimized chart. The homogeneous phantom was used to assess objective parameters that are associated with image quality, including the signal difference-to-noise ratio (SdNR), which is used to define a figure of merit (FOM) in the optimization process. The anthropomorphic phantom was used to subjectively evaluate image quality using Visual Grading Analysis (VGA) that was performed by three experienced radiologists. The technique that had the best VGA score and highest FOM was considered the gold standard (GS) in the present study. Image quality, dose and the exposure index that are currently used in the clinical routine for hand examinations in our institution were compared with the GS technique. The effective dose reduction was 67.0%. Good image quality was obtained for both techniques, although the exposure indices were 1.60 and 2.39 for the GS and clinical routine, respectively.
Resumo:
Background: Treatment of chronically infected wounds is a challenge, and bacterial environmental contamination is a growing issue in infection control. Ozone may have a role in these situations. The objective of this study was to determine whether a low dose of gaseous ozone/oxygen mixture eliminates pathogenic bacteria cultivated in Petri dishes. Methods: A pilot study with 6 bacterial strains was made using different concentrations of ozone in an ozone-oxygen mixture to determine a minimally effective dose that completely eliminated bacterial growth. The small and apparently bactericidal gaseous dose of 20 mu g/mL ozone/oxygen (1: 99) mixture, applied for 5min under atmospheric pressure was selected. In the 2nd phase, eight bacterial strains with well characterized resistance patterns were evaluated in vitro using agar-blood in adapted Petri dishes (10(5) bacteria/dish). The cultures were divided into 3 groups: 1-ozone-oxygen gaseous mixture containing 20 mu g of O-3/mL for 5 min; 2- 100% oxygen for 5 min; 3- baseline: no gas was used. Results: The selected ozone dose was applied to the following eight strains: Escherichia coli, oxacillin-resistant Staphylococcus aureus, oxacillin-susceptible Staphylococcus aureus, vancomycin-resistant Enterococcus faecalis, extended-spectrum beta-lactamase-producing Klebsiella pneumoniae, carbapenem-resistant Acinetobacter baumannii, Acinetobacter baumannii susceptible only to carbapenems, and Pseudomonas aeruginosa susceptible to imipenem and meropenem. All isolates were completely inhibited by the ozone-oxygen mixture while growth occurred in the other 2 groups. Conclusion: A single topical application by nebulization of a low ozone dose completely inhibited the growth of all potentially pathogenic bacterial strains with known resistance to antimicrobial agents.
Resumo:
The effect of copper (Cu) filtration on image quality and dose in different digital X-ray systems was investigated. Two computed radiography systems and one digital radiography detector were used. Three different polymethylmethacrylate blocks simulated the pediatric body. The effect of Cu filters of 0.1, 0.2, and 0.3 mm thickness on the entrance surface dose (ESD) and the corresponding effective doses (EDs) were measured at tube voltages of 60, 66, and 73 kV. Image quality was evaluated in a contrast-detail phantom with an automated analyzer software. Cu filters of 0.1, 0.2, and 0.3 mm thickness decreased the ESD by 25-32%, 32-39%, and 40-44%, respectively, the ranges depending on the respective tube voltages. There was no consistent decline in image quality due to increasing Cu filtration. The estimated ED of anterior-posterior (AP) chest projections was reduced by up to 23%. No relevant reduction in the ED was noted in AP radiographs of the abdomen and pelvis or in posterior-anterior radiographs of the chest. Cu filtration reduces the ESD, but generally does not reduce the effective dose. Cu filters can help protect radiosensitive superficial organs, such as the mammary glands in AP chest projections.
Resumo:
recombinant activated factor VII (rFVIIa) is used off-label for massive bleeding. There is no convincing evidence of the benefits of this practice and the minimal effective dose is unknown. The aim of the study was to evaluate our in-house guideline recommending a low dose of 60 μg/kg for off-label use of rFVIIa.
Resumo:
Objective. The purpose of this study was to determine the dose profile of the Cranex Tome radiography unit and compare it with that of the Scanora machine.Study design. The radiation dose delivered by the Cranex Tome radiography unit during the cross-sectional mode was determined. Single tooth gaps in regions 3 (16) and 30 (46) were simulated. Dosimetry was carried out with 2 phantoms, a head and neck phantom and a full-body phantom loaded with 142 thermoluminescent dosimeters (TLD) and 280 TLD, respectively; all locations corresponded to radiosensitive organs or tissues. The recorded local mean organ doses were compared with those measured in another study evaluating the Scanora machine.Results. Generally, dose values from the Cranex Tome radiography unit reached only 50% to 60% of the values measured for the Scanora machine. The effective dose was calculated as 0.061 mSv and 0.04 mSv for tooth regions 3 (16) and 30 (46), respectively. Corresponding values for the Scanora machine were 0.117 mSv and 0.084 mSv.Conclusion. Cross-sectional imaging in the molar region of the upper and the lower jaw can be performed with the Cranex Tome unit, which delivers only approximately half of the dose that the Scanora machine delivers.
Resumo:
OBJECTIVE: Measures to reduce radiation exposure and injected iodine mass are becoming more important with the widespread and often repetitive use of pulmonary CT angiography (CTA) in patients with suspected pulmonary embolism. In this retrospective study, we analyzed the capability of 2 low-kilovoltage CTA-protocols to achieve these goals. MATERIALS AND METHODS: Ninety patients weighing less than 100 kg were examined by a pulmonary CTA protocol using either 100 kVp (group A) or 80 kVp (group B). Volume and flow rate of contrast medium were reduced in group B (75 mL at 3 mL/s) compared with group A (100 mL at 4 mL/s). Attenuation was measured in the central and peripheral pulmonary arteries, and the contrast-to-noise ratios (CNR) were calculated. Entrance skin dose was estimated by measuring the surface dose in an ovoid-cylindrical polymethyl methacrylate chest phantom with 2 various dimensions corresponding to the range of chest diameters in our patients. Quantitative image parameters, estimated effective dose, and skin dose in both groups were compared by the t test. Arterial enhancement, noise, and overall quality were independently assessed by 3 radiologists, and results were compared between the groups using nonparametric tests. RESULTS: Mean attenuation in the pulmonary arteries in group B (427.6 +/- 116 HU) was significantly higher than in group A (342.1 +/- 87.7 HU; P < 0.001), whereas CNR showed no difference (group A, 20.6 +/- 7.3 and group B, 22.2 +/- 7.1; P = 0.302). Effective dose was lower by more than 40% with 80 kVp (1.68 +/- 0.23 mSv) compared with 100 kVp (2.87 +/- 0.88 mSv) (P < 0.001). Surface dose was significantly lower at 80 kVp compared with 100 kVp at both phantom dimensions (2.75 vs. 3.22 mGy; P = 0.027 and 2.22 vs. 2.73 mGy; P = 0.005, respectively). Image quality did not differ significantly between the groups (P = 0.151). CONCLUSIONS: Using 80 kVp in pulmonary CTA permits reduced patient exposure by 40% and CM volume by 25% compared with 100 kVp without deterioration of image quality in patients weighing less than 100 kg.
Resumo:
In this prospective, non-randomized 6-month observational study we evaluated the efficacy of intravenous immunoglobulin (IVIg) dose increase in patients with multifocal motor neuropathy (MMN). Diagnosis according to AAEM criteria, repetitive IVIg treatment for at least one year, persistent paresis and conduction block, stable symptoms and findings for at least six months were inclusion criteria. Nine patients (7 men) were identified and approved to standardized increase of IVIg dose. Patients were monitored using clinical scores and electrophysiological studies. Dose was increased from a baseline of 0.5 g/kg per month [mean, range: 0.1-1.1], given at variable intervals [4-12 weeks] to 1.2 g/kg per month given over 3 consecutive days planned for 6 cycles. If the patients' motor function did not improve after two cycles they entered step two: Dose was increased to 2 g/kg per month given over 5 consecutive days. The increased dose was maintained for 6 months. Assessments were performed by the same investigator, not involved in the patient's management, at baseline, after 2 and after 6 months. Following dose increase, motor function significantly improved in 6 patients (p = 0.014), 2 patients entered step two, 1 patient withdrew due to absent efficacy. Higher doses of IVIg caused more side effects, however, transient and rarely severe (p = 0.014). IVIg dose increase may improve motor functions in patients with stable MMN on long-term IVIg therapy independent of baseline dose. Improvement of motor function was associated with shorter disease duration (p = 0.008), but not with degree of muscle atrophy (p = 0.483). The treatment strategy to try to find the lowest effective dose and the longest tolerated interval might lead to underdosing in the long-term in many patients.
Resumo:
RATIONALE AND OBJECTIVES: The aim of this study was to measure the radiation dose of dual-energy and single-energy multidetector computed tomographic (CT) imaging using adult liver, renal, and aortic imaging protocols. MATERIALS AND METHODS: Dual-energy CT (DECT) imaging was performed on a conventional 64-detector CT scanner using a software upgrade (Volume Dual Energy) at tube voltages of 140 and 80 kVp (with tube currents of 385 and 675 mA, respectively), with a 0.8-second gantry revolution time in axial mode. Parameters for single-energy CT (SECT) imaging were a tube voltage of 140 kVp, a tube current of 385 mA, a 0.5-second gantry revolution time, helical mode, and pitch of 1.375:1. The volume CT dose index (CTDI(vol)) value displayed on the console for each scan was recorded. Organ doses were measured using metal oxide semiconductor field-effect transistor technology. Effective dose was calculated as the sum of 20 organ doses multiplied by a weighting factor found in International Commission on Radiological Protection Publication 60. Radiation dose saving with virtual noncontrast imaging reconstruction was also determined. RESULTS: The CTDI(vol) values were 49.4 mGy for DECT imaging and 16.2 mGy for SECT imaging. Effective dose ranged from 22.5 to 36.4 mSv for DECT imaging and from 9.4 to 13.8 mSv for SECT imaging. Virtual noncontrast imaging reconstruction reduced the total effective dose of multiphase DECT imaging by 19% to 28%. CONCLUSION: Using the current Volume Dual Energy software, radiation doses with DECT imaging were higher than those with SECT imaging. Substantial radiation dose savings are possible with DECT imaging if virtual noncontrast imaging reconstruction replaces precontrast imaging.
Resumo:
RATIONALE AND OBJECTIVES: To evaluate the effect of automatic tube current modulation on radiation dose and image quality for low tube voltage computed tomography (CT) angiography. MATERIALS AND METHODS: An anthropomorphic phantom was scanned with a 64-section CT scanner using following tube voltages: 140 kVp (Protocol A), 120 kVp (Protocol B), 100 kVp (Protocol C), and 80 kVp (Protocol D). To achieve similar noise, combined z-axis and xy-axes automatic tube current modulation was applied. Effective dose (ED) for the four tube voltages was assessed. Three plastic vials filled with different concentrations of iodinated solution were placed on the phantom's abdomen to obtain attenuation measurements. The signal-to-noise ratio (SNR) was calculated and a figure of merit (FOM) for each iodinated solution was computed as SNR(2)/ED. RESULTS: The ED was kept similar for the four different tube voltages: (A) 5.4 mSv +/- 0.3, (B) 4.1 mSv +/- 0.6, (C) 3.9 mSv +/- 0.5, and (D) 4.2 mSv +/- 0.3 (P > .05). As the tube voltage decreased from 140 to 80 kVp, image noise was maintained (range, 13.8-14.9 HU) (P > .05). SNR increased as the tube voltage decreased, with an overall gain of 119% for the 80-kVp compared to the 140-kVp protocol (P < .05). The FOM results indicated that with a reduction of the tube voltage from 140 to 120, 100, and 80 kVp, at constant SNR, ED was reduced by a factor of 2.1, 3.3, and 5.1, respectively, (P < .001). CONCLUSIONS: As tube voltage decreases, automatic tube current modulation for CT angiography yields either a significant increase in image quality at constant radiation dose or a significant decrease in radiation dose at a constant image quality.
Resumo:
X-ray computed tomography (CT) is a non-invasive medical imaging technique that generates cross-sectional images by acquiring attenuation-based projection measurements at multiple angles. Since its first introduction in the 1970s, substantial technical improvements have led to the expanding use of CT in clinical examinations. CT has become an indispensable imaging modality for the diagnosis of a wide array of diseases in both pediatric and adult populations [1, 2]. Currently, approximately 272 million CT examinations are performed annually worldwide, with nearly 85 million of these in the United States alone [3]. Although this trend has decelerated in recent years, CT usage is still expected to increase mainly due to advanced technologies such as multi-energy [4], photon counting [5], and cone-beam CT [6].
Despite the significant clinical benefits, concerns have been raised regarding the population-based radiation dose associated with CT examinations [7]. From 1980 to 2006, the effective dose from medical diagnostic procedures rose six-fold, with CT contributing to almost half of the total dose from medical exposure [8]. For each patient, the risk associated with a single CT examination is likely to be minimal. However, the relatively large population-based radiation level has led to enormous efforts among the community to manage and optimize the CT dose.
As promoted by the international campaigns Image Gently and Image Wisely, exposure to CT radiation should be appropriate and safe [9, 10]. It is thus a responsibility to optimize the amount of radiation dose for CT examinations. The key for dose optimization is to determine the minimum amount of radiation dose that achieves the targeted image quality [11]. Based on such principle, dose optimization would significantly benefit from effective metrics to characterize radiation dose and image quality for a CT exam. Moreover, if accurate predictions of the radiation dose and image quality were possible before the initiation of the exam, it would be feasible to personalize it by adjusting the scanning parameters to achieve a desired level of image quality. The purpose of this thesis is to design and validate models to quantify patient-specific radiation dose prospectively and task-based image quality. The dual aim of the study is to implement the theoretical models into clinical practice by developing an organ-based dose monitoring system and an image-based noise addition software for protocol optimization.
More specifically, Chapter 3 aims to develop an organ dose-prediction method for CT examinations of the body under constant tube current condition. The study effectively modeled the anatomical diversity and complexity using a large number of patient models with representative age, size, and gender distribution. The dependence of organ dose coefficients on patient size and scanner models was further evaluated. Distinct from prior work, these studies use the largest number of patient models to date with representative age, weight percentile, and body mass index (BMI) range.
With effective quantification of organ dose under constant tube current condition, Chapter 4 aims to extend the organ dose prediction system to tube current modulated (TCM) CT examinations. The prediction, applied to chest and abdominopelvic exams, was achieved by combining a convolution-based estimation technique that quantifies the radiation field, a TCM scheme that emulates modulation profiles from major CT vendors, and a library of computational phantoms with representative sizes, ages, and genders. The prospective quantification model is validated by comparing the predicted organ dose with the dose estimated based on Monte Carlo simulations with TCM function explicitly modeled.
Chapter 5 aims to implement the organ dose-estimation framework in clinical practice to develop an organ dose-monitoring program based on a commercial software (Dose Watch, GE Healthcare, Waukesha, WI). In the first phase of the study we focused on body CT examinations, and so the patient’s major body landmark information was extracted from the patient scout image in order to match clinical patients against a computational phantom in the library. The organ dose coefficients were estimated based on CT protocol and patient size as reported in Chapter 3. The exam CTDIvol, DLP, and TCM profiles were extracted and used to quantify the radiation field using the convolution technique proposed in Chapter 4.
With effective methods to predict and monitor organ dose, Chapters 6 aims to develop and validate improved measurement techniques for image quality assessment. Chapter 6 outlines the method that was developed to assess and predict quantum noise in clinical body CT images. Compared with previous phantom-based studies, this study accurately assessed the quantum noise in clinical images and further validated the correspondence between phantom-based measurements and the expected clinical image quality as a function of patient size and scanner attributes.
Chapter 7 aims to develop a practical strategy to generate hybrid CT images and assess the impact of dose reduction on diagnostic confidence for the diagnosis of acute pancreatitis. The general strategy is (1) to simulate synthetic CT images at multiple reduced-dose levels from clinical datasets using an image-based noise addition technique; (2) to develop quantitative and observer-based methods to validate the realism of simulated low-dose images; (3) to perform multi-reader observer studies on the low-dose image series to assess the impact of dose reduction on the diagnostic confidence for multiple diagnostic tasks; and (4) to determine the dose operating point for clinical CT examinations based on the minimum diagnostic performance to achieve protocol optimization.
Chapter 8 concludes the thesis with a summary of accomplished work and a discussion about future research.
Resumo:
Prior work of our research group, that quantified the alarming levels of radiation dose to patients with Crohn’s disease from medical imaging and the notable shift towards CT imaging making these patients an at risk group, provided context for this work. CT delivers some of the highest doses of ionising radiation in diagnostic radiology. Once a medical imaging examination is deemed justified, there is an onus on the imaging team to endeavour to produce diagnostic quality CT images at the lowest possible radiation dose to that patient. The fundamental limitation with conventional CT raw data reconstruction was the inherent coupling of administered radiation dose with observed image noise – the lower the radiation dose, the noisier the image. The renaissance, rediscovery and refinement of iterative reconstruction removes this limitation allowing either an improvement in image quality without increasing radiation dose or maintenance of image quality at a lower radiation dose compared with traditional image reconstruction. This thesis is fundamentally an exercise in optimisation in clinical CT practice with the objectives of assessment of iterative reconstruction as a method for improvement of image quality in CT, exploration of the associated potential for radiation dose reduction, and development of a new split dose CT protocol with the aim of achieving and validating diagnostic quality submillisiever t CT imaging in patients with Crohn’s disease. In this study, we investigated the interplay of user-selected parameters on radiation dose and image quality in phantoms and cadavers, comparing traditional filtered back projection (FBP) with iterative reconstruction algorithms. This resulted in the development of an optimised, refined and appropriate split dose protocol for CT of the abdomen and pelvis in clinical patients with Crohn’s disease allowing contemporaneous acquisition of both modified and conventional dose CT studies. This novel algorithm was then applied to 50 patients with a suspected acute complication of known Crohn’s disease and the raw data reconstructed with FBP, adaptive statistical iterative reconstruction (ASiR) and model based iterative reconstruction (MBIR). Conventional dose CT images with FBP reconstruction were used as the reference standard with which the modified dose CT images were compared in terms of radiation dose, diagnostic findings and image quality indices. As there are multiple possible user-selected strengths of ASiR available, these were compared in terms of image quality to determine the optimal strength for this modified dose CT protocol. Modified dose CT images with MBIR were also compared with contemporaneous abdominal radiograph, where performed, in terms of diagnostic yield and radiation dose. Finally, attenuation measurements in organs, tissues, etc. with each reconstruction algorithm were compared to assess for preservation of tissue characterisation capabilities. In the phantom and cadaveric models, both forms of iterative reconstruction examined (ASiR and MBIR) were superior to FBP across a wide variety of imaging protocols, with MBIR superior to ASiR in all areas other than reconstruction speed. We established that ASiR appears to work to a target percentage noise reduction whilst MBIR works to a target residual level of absolute noise in the image. Modified dose CT images reconstructed with both ASiR and MBIR were non-inferior to conventional dose CT with FBP in terms of diagnostic findings, despite reduced subjective and objective indices of image quality. Mean dose reductions of 72.9-73.5% were achieved with the modified dose protocol with a mean effective dose of 1.26mSv. MBIR was again demonstrated superior to ASiR in terms of image quality. The overall optimal ASiR strength for the modified dose protocol used in this work is ASiR 80%, as this provides the most favourable balance of peak subjective image quality indices with less objective image noise than the corresponding conventional dose CT images reconstructed with FBP. Despite guidelines to the contrary, abdominal radiographs are still often used in the initial imaging of patients with a suspected complication of Crohn’s disease. We confirmed the superiority of modified dose CT with MBIR over abdominal radiographs at comparable doses in detection of Crohn’s disease and non-Crohn’s disease related findings. Finally, we demonstrated (in phantoms, cadavers and in vivo) that attenuation values do not change significantly across reconstruction algorithms meaning preserved tissue characterisation capabilities with iterative reconstruction. Both adaptive statistical and model based iterative reconstruction algorithms represent feasible methods of facilitating acquisition diagnostic quality CT images of the abdomen and pelvis in patients with Crohn’s disease at markedly reduced radiation doses. Our modified dose CT protocol allows dose savings of up to 73.5% compared with conventional dose CT, meaning submillisievert imaging is possible in many of these patients.
Resumo:
The aim of this study was to evaluate the effective dose received by patients undergoing CCTA in both acquisition methods in the period June 1st to October 30th, 2013. Data collection was performed at the Clínica Sabedotti in Ponta Grossa/PR, with General Electric Equipment VCT XT, 64 detections lines. The effective dose was measured from the thirty cases randomly selected of Picture Archival and Communication System – PACS, reported by Dose Lenght Product (DLP) equipment for each examination and the conversion factor (EDLP) set by the European Commission for cardiac region (EDLP = 0.014). The results showed significant differences in radiation dose delivered to the patient according to the employee acquisition method, Retrospective or Prospective of ECG.