975 resultados para Effective Mesothelial Area
Resumo:
OBJECTIVE Sutureless valves are designed to facilitate surgical implantation, including less-invasive techniques in aortic valve replacement, by maintaining surgical precision of implantation compared with transcatheter techniques. Long-term clinical experience with sutureless valves is lacking. We report the 5-year follow-up results of an international, prospective, multicenter study evaluating the clinical performance and safety of the 3f Enable valve (Medtronic Inc, Minneapolis, Minn). METHODS Between March 2007 and December 2009, 141 patients (54 male; mean age, 76.1±5.7 years) undergoing aortic valve replacement with the 3f Enable valve were enrolled in 10 European sites. The mean follow-up was 2.76 years (range, 2 days to 5.1 years; total, 388.7 patient-years). Echocardiographic valvular hemodynamic and morphologic analyses were performed by an independent core laboratory. RESULTS The mean systolic gradient was 10.4±4.4 mm Hg at discharge and 7.7±4.1 mm Hg at 5 years. The mean effective orifice area was 1.7±0.5 cm2 at discharge and 1.6±0.2 cm2 at 5 years. Freedom from all-cause and valve-related mortality was 87.6%±2.9% and 96.8%±1.6% at 1 year (113 patients at risk) and 77.0%±7.5% and 93.8%±4.8% at 5 years (24 patients at risk), respectively. Six patients underwent reoperation (4 because of major paravalvular leakage and 2 because of endocarditis). Freedom from reoperation was 95.4%±1.9% at 1 year and 95.4%±6.1% at 5 years. No structural valve deterioration occurred during the follow-up period. CONCLUSIONS The sutureless 3f Enable valve represents a safe and effective treatment for aortic valve stenosis, providing an excellent hemodynamic profile. This study represents the longest follow-up study for a sutureless bioprosthesis. Sutureless valves may become an option for all patients with indicated biological aortic valve replacement.
Resumo:
OBJECTIVES Transcatheter aortic valve implantation (TAVI) is routinely performed via the transfemoral and the transapical route. Subclavian and direct aortic access are described alternatives for TAVI. Recently, the transcarotid approach has been shown to be feasible among patients with limited vascular access and severe native aortic valve stenosis. We aim to investigate the feasibility of transcatheter aortic valve-in-valve implantation via the transcarotid access in patients with severe aortic regurgitation due to degenerated stentless Shelhigh conduits using the 29 mm Medtronic CoreValve bioprosthesis. METHODS Three patients with complex vascular anatomy undergoing transcatheter valve-in-valve implantation via the transcarotid route were enrolled in the study. The procedure was performed under general anaesthesia using surgical cut-down to facilitate vascular access. Immediate procedural results as well as echocardiographic and clinical outcomes after 30 days and 6 months of the follow-up were recorded and analysed. RESULTS All three patients underwent unproblematic TAVI and experienced dramatic improvement of symptoms. Mean transvalvular gradient was 3, 6 and 11 mmHg, respectively. Effective orifice area ranged between 1.7 and 2.2 cm(2). Only mild paravalvular regurgitation was detected by echocardiography after 30 days of the follow-up. CONCLUSIONS The transcarotid approach can be safely performed for valve-in-valve procedures using the Medtronic CoreValve in patients with limited vascular access. It enables accurate positioning and implantation of the prosthesis.
Resumo:
OBJECTIVES The aim of the Cavalier trial was to evaluate the safety and performance of the Perceval sutureless aortic valve in patients undergoing aortic valve replacement (AVR). We report the 30-day clinical and haemodynamic outcomes from the largest study cohort with a sutureless valve. METHODS From February 2010 to September 2013, 658 consecutive patients (mean age 77.8 years; 64.4% females; mean logistic EuroSCORE 10.2%) underwent AVR in 25 European Centres. Isolated AVRs were performed in 451 (68.5%) patients with a less invasive approach in 219 (33.3%) cases. Of the total, 40.0% were octogenarians. Congenital bicuspid aortic valve was considered an exclusion criterion. RESULTS Implantation was successful in 628 patients (95.4%). In isolated AVR through sternotomy, the mean cross-clamp time and the cardiopulmonary bypass (CPB) time were 32.6 and 53.7 min, and with the less invasive approach 38.8 and 64.5 min, respectively. The 30-day overall and valve-related mortality rates were 3.7 and 0.5%, respectively. Valve explants, stroke and endocarditis occurred in 0.6, 2.1 and in 0.1% of cases, respectively. Preoperative mean and peak pressure gradients decreased from 44.8 and 73.24 mmHg to 10.24 and 19.27 mmHg at discharge, respectively. The mean effective orifice area improved from 0.72 to 1.46 cm(2). CONCLUSIONS The current 30-day results show that the Perceval valve is safe (favourable haemodynamic effect and low complication rate), and can be implanted with a fast and reproducible technique after a short learning period. Short cross-clamp and CPB times were achieved in both isolated and combined procedures. The Perceval valve represents a promising alternative to biological AVR, especially with a less invasive approach and in older patients.
Resumo:
Chronopotentiometric and swelling experiments have been conducted to characterize the behavior of a Nafion membrane in NaCl and KCl aqueous solutions without and with glucose. A mixture solution with similar composition to the cerebrospinal fluid and blood plasma has also been studied. From the chronotentiograms, current-voltage curves have been obtained, and the values of the limiting current density, diffusion boundary layer thickness, difference between counter-ion transport number in membrane and free solution, and transition times have been determined for the investigated membrane systems. The obtained results indicate that the presence of glucose affects the ion transport through the membrane depending on the electrolyte and glucose concentrations. At low electrolyte concentration, experimental transition times are found to be smaller in presence of glucose, which has been related to an effective membrane area reduction in presence of glucose. The membrane system corresponding to the mixture solution shows a behavior similar to the single high concentration NaCl membrane system, indicating that the observed behavior is mainly associated to the Na^+ ions transport in higher proportion. In this case, the glucose presence does not affect significantly the investigated properties of the membrane, which is interesting for its utilization in a glucose fuel cell.
Resumo:
O objetivo deste estudo foi avaliar o efeito dos tempos de aplicação 3, 4 e 5 minutos por ERA do ultrassom terapêutico (UST) na organização das fibras de colágeno em lesão do tendão do calcâneo de ratos. Foram utilizados quarenta ratos machos Wistar, dos quais 32 sofreram tenotomia total do tendão do calcâneo e foram divididos em 5 grupos: GC, sem tenotomia e tratamento; GT, com tenotomia e sem tratamento; UST3, UST4 e UST5 submetidos à tenotomia e tratados com UST nos tempos de 3, 4 e 5 minutos por área de radiação efetiva respectivamente. Os animais foram submetidos à primeira aplicação do UST foi 24 horas após a cirurgia de tenotomia. A irradiação ultrassônica foi aplicada com os seguintes parâmetros: 1 MHz, modo pulsado com 20% do ciclo de trabalho (2 ms de emissão / 8 ms de intervalo), frequência de 100 Hz, 0,5 W / cm² de intensidade e ERA de 0,5 cm². A aplicação foi realizada 1x/dia. Os animais foram sacrificados após a 10ª sessão de tratamento, no 12º dia pós-operatório. Os tendões foram retirados cirurgicamente para análise da organização das fibras colágenas através do método de birrefringência (retardo óptico - OR). As fibras colágenas mostraram melhor agregação e organização no grupo UST3, UST4 e UST5 quando comparado ao GT (p<0.05) e o UST5 apresentou melhor resposta na comparação intergrupos. Conclui-se que o UST, aplicado no tempo de 5 minutos por área de radiação efetiva, apresentou a melhor dose-resposta quanto à organização das fibras colágenas no reparo tecidual de tendões de ratos
Resumo:
OBJECTIVE Sutureless aortic valve replacement (AVR) offers an alternative to standard AVR in aortic stenosis. This prospective, single-arm study aimed to demonstrate safety and effectiveness of a bovine pericardial sutureless aortic valve at 1 year. METHODS From February 2010 to September 2013, 658 patients (mean age 78.3 ± 5.6 years; 40.0% octogenarian; 64.4% female; mean Society of Thoracic Surgeons score 7.2 ± 7.4) underwent sutureless AVR in 25 European centers. Concomitant cardiac procedures were performed in 29.5% and minimally invasive cardiac surgery in 33.3%. RESULTS One-year site-reported event rates were 8.1% for all-cause mortality, 4.5% for cardiac mortality, 3.0% for stroke, 1.9% for valve-related reoperation, 1.4% for endocarditis, and 0.6% for major paravalvular leak. No valve thrombosis, migration, or structural valve deterioration occurred. New York Heart Association class improved at least 1 level in 77.5% and remained stable (70.4% New York Heart Association class I or II at 1 year). Mean effective orifice area was 1.5 ± 0.4 cm(2); pressure gradient was 9.2 ± 5.0 mm Hg. Left ventricular mass decreased from 138.5 g/m(2) before surgery to 115.3 g/m(2) at 1 year (P < .001). Echocardiographic core laboratory findings confirmed that paravalvular leak was rare and remained stable during follow-up. CONCLUSIONS The Perceval sutureless valve resulted in low 1-year event rates in intermediate-risk patients undergoing AVR. New York Heart Association class improved in more than three-quarters of patients and remained stable. These data support the safety and efficacy to 1 year of the Perceval sutureless valve in this intermediate-risk population.
Resumo:
We evaluated the hydrodynamic performance of kangaroo aortic valve matrices (KMs) (19, 21, and 23 mm), as potential scaffolds in tissue valve engineering using a pulsatile left heart model at low and high cardiac outputs (COs) and heart rates (HRs) of 60 and 90 beats/min. Data were measured in two samples of each type, pooled in two CO levels (2.1 +/- 0.7 and 4.2 +/- 0.6 L/min; mean +/- standard errors on the mean), and analyzed using analysis of variance with CO level, HR, and valve type as fixed factors and compared to similar porcine matrices (PMs). Transvalvular pressure gradient (Delta P) was a function of HR (P < 0.001) and CO (P < 0.001) but not of valve type (P = 0.39). Delta P was consistently lower in KMs but not significantly different from PMs. The effective orifice area and performance index of kangaroo matrices was statistically larger for all sizes at both COs and HRs.
Resumo:
Van der Waals forces often dominate interactions and adhesion between fine particles and, in turn, decisively influence the bulk behaviour of powders. However, so far there is no effective means to characterize the adhesive behaviour of such particles. A complication is that most powder particles have rough surfaces, and it is the asperities on the surfaces that touch, confounding the actual surface that is in contact. Conventional approaches using surface energy provide limited information regarding adhesion, and pull-off forces measured through atomic force microscope (AFM) are highly variable and difficult to interpret. In this paper we develop a model which combines the Rumpf-Rabinovich and the JKR-DMT theories to account simultaneously for the effects of surface roughness and deformation on adhesion. This is applied to a 'characteristic asperity' which may be easily obtained from AFM measurements. The concept of adhesiveness, a material property reflecting the influences of elastic deformability, surface roughness, and interfacial surface energy, is introduced as an efficient and quantitative measure of the adhering tendency of a powder. Furthermore, a novel concept of specific adhesiveness is proposed as a convenient tool for characterizing and benchmarking solid materials. This paper provides an example to illustrate the use of the proposed theories. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Objectives The aim of this work was to investigate the effect of cholesterol on the bilayer loading of drugs and their subsequent release and to investigate fatty alcohols as an alternative bilayer stabiliser to cholesterol. Methods The loading and release rates of four low solubility drugs (diazepam, ibuprofen, midazolam and propofol) incorporated within the bilayer of multilamellar liposomes which contained a range of cholesterol (0–33 mol/mol%) or a fatty alcohol (tetradecanol, hexadecanol and octadecanol) were investigated. The molecular packing of these various systems was also investigated in Langmuir monolayer studies. Key findings Loading and release of drugs within the liposome bilayer was shown to be influenced by their cholesterol content: increasing cholesterol content was shown to reduce drug incorporation and inclusion of cholesterol in the bilayer changed the release profile of propofol from zero-order, for phosphatidyl choline only liposomes, to a first-order model when 11 to 33 total molar % of cholesterol was present in the formulation. At higher bilayer concentrations substitution of cholesterol with tetradecanol was shown to have less of a detrimental impact on bilayer drug loading. However, the presence of cholesterol within the liposome bilayer was shown to reduce drug release compared with fatty alcohols. Monolayer studies undertaken showed that effective mean area per molecule for a 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) : cholesterol mixture deviated by 9% from the predicted area compared with 5% with a similar DSPC : tetradecanol mixture. This evidence, combined with cholesterol being a much more bulky structure, indicated that the condensing influence of tetradecanol was less compared with cholesterol, thus supporting the reduced impact of tetradecanol on drug loading and drug retention. Conclusions Liposomes can be effectively formulated using fatty alcohols as an alternative bilayer stabiliser to cholesterol. The general similarities in the characteristics of liposomes containing fatty alcohols or cholesterol suggest a common behavioural influence for both compounds within the bilayer.
Resumo:
Advancements in the micro-and nano-scale fabrication techniques have opened up new avenues for the development of portable, scalable and easier-to-use biosensors. Over the last few years, electrodes made of carbon have been widely used as sensing units in biosensors due to their attractive physiochemical properties. The aim of this research is to investigate different strategies to develop functionalized high surface carbon micro/nano-structures for electrochemical and biosensing devices. High aspect ratio three-dimensional carbon microarrays were fabricated via carbon microelectromechanical systems (C-MEMS) technique, which is based on pyrolyzing pre-patterned organic photoresist polymers. To further increase the surface area of the carbon microstructures, surface porosity was introduced by two strategies, i.e. (i) using F127 as porogen and (ii) oxygen reactive ion etch (RIE) treatment. Electrochemical characterization showed that porous carbon thin film electrodes prepared by using F127 as porogen had an effective surface area (Aeff 185%) compared to the conventional carbon electrode. To achieve enhanced electrochemical sensitivity for C-MEMS based functional devices, graphene was conformally coated onto high aspect ratio three-dimensional (3D) carbon micropillar arrays using electrostatic spray deposition (ESD) technique. The amperometric response of graphene/carbon micropillar electrode arrays exhibited higher electrochemical activity, improved charge transfer and a linear response towards H2O2 detection between 250&mgr;M to 5.5mM. Furthermore, carbon structures with dimensions from 50 nano-to micrometer level have been fabricated by pyrolyzing photo-nanoimprint lithography patterned organic resist polymer. Microstructure, elemental composition and resistivity characterization of the carbon nanostructures produced by this process were very similar to conventional photoresist derived carbon. Surface functionalization of the carbon nanostructures was performed using direct amination technique. Considering the need for requisite functional groups to covalently attach bioreceptors on the carbon surface for biomolecule detection, different oxidation techniques were compared to study the types of carbon-oxygen groups formed on the surface and their percentages with respect to different oxidation pretreatment times. Finally, a label-free detection strategy using signaling aptamer/protein binding complex for platelet-derived growth factor oncoprotein detection on functionalized three-dimensional carbon microarrays platform was demonstrated. The sensor showed near linear relationship between the relative fluorescence difference and protein concentration even in the sub-nanomolar range with an excellent detection limit of 5 pmol.
Resumo:
Porous layers can be formed electrochemically on (100) oriented n-InP substrates in aqueous KOH. A nanoporous layer is obtained underneath a dense near-surface layer and the pores appear to propagate from holes through the near-surface layer. In the early stages of the anodization transmission electron microscopy (TEM) clearly shows individual porous domains that appear to have a square-based pyramidal shape. Each domain appears to develop from an individual surface pit which forms a channel through this near-surface layer. We suggest that the pyramidal structure arises as a result of preferential pore propagation along the <100> directions. AFM measurements show that the density of surface pits increases with time. Each of these pits acts as a source for a pyramidal porous domain. When the domains grow, the current density increases correspondingly. Eventually the domains meet, forming a continuous porous layer, the interface between the porous and bulk InP becomes relatively flat and its total effective surface area decreases resulting in a decrease in the current density. Current-time curves at constant potential exhibit a peak and porous layers are observed to form beneath the electrode surface. The density of pits formed on the surface increases with time and approaches a plateau value. Porous layers are also observed in highly doped InP but are not observed in wafers with doping densities below ~5 × 1017 cm-3. Numerical models of this process have been developed invoking a mechanism of directional selectivity of pore growth preferentially along the <100> lattice directions. Manipulation of the parameters controlling these curves shows that the fall-off in current is controlled by the rate of diffusion of electrolyte through the pore structure with the final decline in current being caused by the termination of growth at the pore tips through the formation of passivating films or some other irreversible modification of the pore tips.
Resumo:
Advancements in the micro-and nano-scale fabrication techniques have opened up new avenues for the development of portable, scalable and easier-to-use biosensors. Over the last few years, electrodes made of carbon have been widely used as sensing units in biosensors due to their attractive physiochemical properties. The aim of this research is to investigate different strategies to develop functionalized high surface carbon micro/nano-structures for electrochemical and biosensing devices. High aspect ratio three-dimensional carbon microarrays were fabricated via carbon microelectromechanical systems (C-MEMS) technique, which is based on pyrolyzing pre-patterned organic photoresist polymers. To further increase the surface area of the carbon microstructures, surface porosity was introduced by two strategies, i.e. (i) using F127 as porogen and (ii) oxygen reactive ion etch (RIE) treatment. Electrochemical characterization showed that porous carbon thin film electrodes prepared by using F127 as porogen had an effective surface area (Aeff 185%) compared to the conventional carbon electrode. To achieve enhanced electrochemical sensitivity for C-MEMS based functional devices, graphene was conformally coated onto high aspect ratio three-dimensional (3D) carbon micropillar arrays using electrostatic spray deposition (ESD) technique. The amperometric response of graphene/carbon micropillar electrode arrays exhibited higher electrochemical activity, improved charge transfer and a linear response towards H2O2 detection between 250μM to 5.5mM. Furthermore, carbon structures with dimensions from 50 nano-to micrometer level have been fabricated by pyrolyzing photo-nanoimprint lithography patterned organic resist polymer. Microstructure, elemental composition and resistivity characterization of the carbon nanostructures produced by this process were very similar to conventional photoresist derived carbon. Surface functionalization of the carbon nanostructures was performed using direct amination technique. Considering the need for requisite functional groups to covalently attach bioreceptors on the carbon surface for biomolecule detection, different oxidation techniques were compared to study the types of carbon–oxygen groups formed on the surface and their percentages with respect to different oxidation pretreatment times. Finally, a label-free detection strategy using signaling aptamer/protein binding complex for platelet-derived growth factor oncoprotein detection on functionalized three-dimensional carbon microarrays platform was demonstrated. The sensor showed near linear relationship between the relative fluorescence difference and protein concentration even in the sub-nanomolar range with an excellent detection limit of 5 pmol.
Resumo:
Four 100 m lengths of both monofilament gill nets and trammel nets were deployed at depths between 15 and 18 m off the coast of the Algarve (south of Portugal) between April 1995 and June 1996. The nets were set on a natural rocky bottom with one end cut loose to simulate lost nets. Changes in net structure (net height, effective fishing area, movement, colonisation, wear and tear) and their catches (species, sizes, numbers, and biomass) were monitored by divers. Similar patterns were observed in all the nets, with a sharp decrease in net height and effective fishing area, and an increase in visibility within the first few weeks. Net movement was negligible except in the case of interference from other fishing gears. Catch rates were initially comparable to normally fished gill nets and trammel nets in this area, but decreased steadily over time. No sea birds, reptiles or mammals were caught in any of the 8 nets. Catches were dominated by fish (89 % by number, at least 27 species), in particular by sea breams (Sparidae) and wrasses (Labridae). Under the conditions experienced throughout the study the fishing Lifetime of a 'lost' net is between 15 and 20 wk. Based on an exponential model, we estimated that 100 m lengths of gill net and trammel net will catch 314 and 221 fish respectively over a 17 wk period. However, we consider this to be an underestimate due to high rates of predation and scavenging by octopuses, cuttlefish, moray eels, conger eels, and other fish such as the wrasse Coris julis. When the nets were surveyed in the following spring, 8 to 11 mo after being deployed, they were found to be completely destroyed or heavily colonised by algae and had become incorporated into the reef.
Resumo:
Abstract: INTRODUCTION: Acceptance of the IT LEISH(r) and direct agglutination test- made in the Laboratório de Pesquisas Clínicas (DAT-LPC) by healthcare professionals and patients suspected of visceral leishmaniasis (VL) in Ribeirão das Neves was evaluated. METHODS: Ninety-two patients and 47 professionals completed three questionnaires. RESULTS: Eighty-eight (96%) patients considered fingertip blood collection a positive test feature, and 86% (37) and 91% of professionals considered the IT LEISH(r) easy to perform and interpret, respectively. All professionals classified the DAT-LPC as simple and easy. CONCLUSIONS: Patients and healthcare professionals in Ribeirão das Neves demonstrated a high degree of acceptance of the IT LEISH(r) and DAT-LPC.
Resumo:
This paper reflects on the challenges facing the effective implementation of the new EU fundamental rights architecture that emerged from the Lisbon Treaty. Particular attention is paid to the role of the Court of Justice of the European Union (CJEU) and its ability to function as a ‘fundamental rights tribunal’. The paper first analyses the praxis of the European Court of Human Rights in Strasbourg and its long-standing experience in overseeing the practical implementation of the European Convention for the Protection of Human Rights and Fundamental Freedoms. Against this analysis, it then examines the readiness of the CJEU to live up to its consolidated and strengthened mandate on fundamental rights as one of the prime guarantors of the effective implementation of the EU Charter of Fundamental Rights. We specifically review the role of ‘third-party interventions’ by non-governmental organisations, international and regional human rights actors as well as ‘interim relief measures’ when ensuring effective judicial protection of vulnerable individuals in cases of alleged violations of fundamental human rights. To flesh out our arguments, we rely on examples within the scope of the relatively new and complex domain of EU legislation, the Area of Freedom, Security and Justice (AFSJ), and its immigration, external border and asylum policies. In view of the fundamental rights-sensitive nature of these domains, which often encounter shifts of accountability and responsibility in their practical application, and the Lisbon Treaty’s expansion of the jurisdiction of the CJEU to interpret and review EU AFSJ legislation, this area can be seen as an excellent test case for the analyses at hand. The final section puts forth a set of policy suggestions that can assist the CJEU in the process of adjusting itself to the new fundamental rights context in a post-Lisbon Treaty setting.