834 resultados para Earth Observation - Remote Sensing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Remote sensing airborne hyperspectral data are routinely used for applications including algorithm development for satellite sensors, environmental monitoring and atmospheric studies. Single flight lines of airborne hyperspectral data are often in the region of tens of gigabytes in size. This means that a single aircraft can collect terabytes of remotely sensed hyperspectral data during a single year. Before these data can be used for scientific analyses, they need to be radiometrically calibrated, synchronised with the aircraft's position and attitude and then geocorrected. To enable efficient processing of these large datasets the UK Airborne Research and Survey Facility has recently developed a software suite, the Airborne Processing Library (APL), for processing airborne hyperspectral data acquired from the Specim AISA Eagle and Hawk instruments. The APL toolbox allows users to radiometrically calibrate, geocorrect, reproject and resample airborne data. Each stage of the toolbox outputs data in the common Band Interleaved Lines (BILs) format, which allows its integration with other standard remote sensing software packages. APL was developed to be user-friendly and suitable for use on a workstation PC as well as for the automated processing of the facility; to this end APL can be used under both Windows and Linux environments on a single desktop machine or through a Grid engine. A graphical user interface also exists. In this paper we describe the Airborne Processing Library software, its algorithms and approach. We present example results from using APL with an AISA Eagle sensor and we assess its spatial accuracy using data from multiple flight lines collected during a campaign in 2008 together with in situ surveyed ground control points.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecological indicators are used extensively as tools to manage environmental resources. In the oceans, indicators of plankton can be measured using a variety of observing systems including: mooring stations, ships, autonomous floats and ocean colour remote sensing. Given the broad range of temporal and spatial sampling resolutions of these different observing systems, as well as discrepancies in measurements obtained from different sensors, the estimation and interpretation of plankton indicators can present significant challenges. To provide support to the assessment of the state of the marine ecosystem, we propose a suite of plankton indicators and subsequently classify them in an ecological framework that characterizes key attributes of the ecosystem. We present two case studies dealing with plankton indicators of biomass, size structure and phenology, estimated using the most spatially extensive and longest in situ and remote-sensing observations. Discussion of these studies illustrates how some of the challenges in estimating and interpreting plankton indicators may be addressed by using for example relative measurement thresholds, interpolation procedures and delineation of biogeochemical provinces. We demonstrate that one of the benefits attained, when analyzing a suite of plankton indicators classified in an ecological framework, is the elucidation of non-trivial changes in composition, structure and functioning of the marine ecosystem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The export of organic carbon from the surface ocean by sinking particles is an important, yet highly uncertain, component of the global carbon cycle. Here we introduce a mechanistic assessment of the global ocean carbon export using satellite observations, including determinations of net primary production and the slope of the particle size spectrum, to drive a food-web model that estimates the production of sinking zooplankton feces and algal aggregates comprising the sinking particle flux at the base of the euphotic zone. The synthesis of observations and models reveals fundamentally different and ecologically consistent regional-scale patterns in export and export efficiency not found in previous global carbon export assessments. The model reproduces regional-scale particle export field observations and predicts a climatological mean global carbon export from the euphotic zone of ~6 Pg C yr−1. Global export estimates show small variation (typically < 10%) to factor of 2 changes in model parameter values. The model is also robust to the choices of the satellite data products used and enables interannual changes to be quantified. The present synthesis of observations and models provides a path for quantifying the ocean's biological pump.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most satellite models of production have been designed and calibrated for use in the open ocean. Coastal waters are optically more complex, and the use of chlorophyll a (chl a) as a first-order predictor of primary production may lead to substantial errors due to significant quantities of coloured dissolved organic matter (CDOM) and total suspended material (TSM) within the first optical depth. We demonstrate the use of phytoplankton absorption as a proxy to estimate primary production in the coastal waters of the North Sea and Western English Channel for both total, micro- and nano+pico-phytoplankton production. The method is implemented to extrapolate the absorption coefficient of phytoplankton and production at the sea surface to depth to give integrated fields of total and micro- and nano+pico-phytoplankton primary production using the peak in absorption coefficient at red wavelengths. The model is accurate to 8% in the Western English Channel and 22% in this region and the North Sea. By comparison, the accuracy of similar chl a based production models was >250%. The applicability of the method to autonomous optical sensors and remotely sensed aircraft data in both coastal and estuarine environments is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecohydrodynamics investigates the hydrodynamic constraints on ecosystems across different temporal and spatial scales. Ecohydrodynamics play a pivotal role in the structure and functioning of marine ecosystems, however the lack of integrated complex flow models for deep-water ecosystems beyond the coastal zone prevents further synthesis in these settings. We present a hydrodynamic model for one of Earth's most biologically diverse deep-water ecosystems, cold-water coral reefs. The Mingulay Reef Complex (western Scotland) is an inshore seascape of cold-water coral reefs formed by the scleractinian coral Lophelia pertusa. We applied single-image edge detection and composite front maps using satellite remote sensing, to detect oceanographic fronts and peaks of chlorophyll a values that likely affect food supply to corals and other suspension-feeding fauna. We also present a high resolution 3D ocean model to incorporate salient aspects of the regional and local oceanography. Model validation using in situ current speed, direction and sea elevation data confirmed the model's realistic representation of spatial and temporal aspects of circulation at the reef complex including a tidally driven current regime, eddies, and downwelling phenomena. This novel combination of 3D hydrodynamic modelling and remote sensing in deep-water ecosystems improves our understanding of the temporal and spatial scales of ecological processes occurring in marine systems. The modelled information has been integrated into a 3D GIS, providing a user interface for visualization and interrogation of results that allows wider ecological application of the model and that can provide valuable input for marine biodiversity and conservation applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of environmental variables on blue shark Prionace glauca catch per unit effort (CPUE) in a recreational fishery in the western English Channel, between June and September 1998–2011, was quantified using generalized additive models (GAMs). Sea surface temperature (SST) explained 1·4% of GAM deviance, and highest CPUE occurred at 16·7° C, reflecting the optimal thermal preferences of this species. Surface chlorophyll a concentration (CHL) significantly affected CPUE and caused 27·5% of GAM deviance. Additionally, increasing CHL led to rising CPUE, probably due to higher productivity supporting greater prey biomass. The density of shelf-sea tidal mixing fronts explained 5% of GAM deviance, but was non-significant, with increasing front density negatively affecting CPUE. Time-lagged frontal density significantly affected CPUE, however, causing 12·6% of the deviance in a second GAM and displayed a positive correlation. This outcome suggested a delay between the evolution of frontal features and the subsequent accumulation of productivity and attraction of higher trophic level predators, such as P. glauca.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Frequent locations of thermal fronts in UK shelf seas were identified using an archive of 30,000 satellite images acquired between 1999 and 2008, and applied as a proxy for pelagic diversity in the designation of Marine Protected Areas (MPAs). Networks of MPAs are required for conservation of critical marine habitats within Europe, and there are similar initiatives worldwide. Many pelagic biodiversity hotspots are related to fronts, for example cetaceans and basking sharks around the Isle of Man, Hebrides and Cornwall, and hence remote sensing can address this policy need in regions with insufficient species distribution data. This is the first study of UK Continental Shelf front locations to use a 10-year archive of full-resolution (1.1 km) AVHRR data, revealing new aspects of their spatial and seasonal variability. Frontal locations determined at sea or predicted by ocean models agreed closely with the new frequent front maps, which also identified many additional frontal zones. These front maps were among the most widely used datasets in the recommendation of UK MPAs, and would be applicable to other geographic regions and to other policy drivers such as facilitating the deployment of offshore renewable energy devices with minimal environmental impact.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel techniques have been developed for increasing the value of cloud-affected sequences of Advanced Very High Resolution Radiometer (AVHRR) sea-surface temperature (SST) data and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean colour data for visualising dynamic physical and biological oceanic processes such as fronts, eddies and blooms. The proposed composite front map approach is to combine the location, strength and persistence of all fronts observed over several days into a single map, which allows intuitive interpretation of mesoscale structures. This method achieves a synoptic view without blurring dynamic features, an inherent problem with conventional time-averaging compositing methods. Objective validation confirms a significant improvement in feature visibility on composite maps compared to individual front maps. A further novel aspect is the automated detection of ocean colour fronts, correctly locating 96% of chlorophyll fronts in a test data set. A sizeable data set of 13,000 AVHRR and 1200 SeaWiFS scenes automatically processed using this technique is applied to the study of dynamic processes off the Iberian Peninsula such as mesoscale eddy generation, and many additional applications are identified. Front map animations provide a unique insight into the evolution of upwelling and eddies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global ocean phytoplankton biomass (C-phyto) and total particulate organic carbon (POC) stocks have largely been characterized from space using passive ocean color measurements. A space-based light detection and ranging (lidar) system can provide valuable complementary observations for C-phyto and POC assessments, with benefits including day-night sampling, observations through absorbing aerosols and thin cloud layers, and capabilities for vertical profiling through the water column. Here we use measurements from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) to quantify global C-phyto and POC from retrievals of subsurface particulate backscatter coefficients (b(bp)). CALIOP b(bp) data compare favorably with airborne, ship-based, and passive ocean data and yield global average mixed-layer standing stocks of 0.44 Pg C for C-phyto and 1.9 Pg for POC. CALIOP-based C-phyto and POC data exhibit global distributions and seasonal variations consistent with ocean plankton ecology. Our findings support the use of spaceborne lidar measurements for advancing understanding of global plankton systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The detection of dense harmful algal blooms (HABs) by satellite remote sensing is usually based on analysis of chlorophyll-a as a proxy. However, this approach does not provide information about the potential harm of bloom, nor can it identify the dominant species. The developed HAB risk classification method employs a fully automatic data-driven approach to identify key characteristics of water leaving radiances and derived quantities, and to classify pixels into “harmful”, “non-harmful” and “no bloom” categories using Linear Discriminant Analysis (LDA). Discrimination accuracy is increased through the use of spectral ratios of water leaving radiances, absorption and backscattering. To reduce the false alarm rate the data that cannot be reliably classified are automatically labelled as “unknown”. This method can be trained on different HAB species or extended to new sensors and then applied to generate independent HAB risk maps; these can be fused with other sensors to fill gaps or improve spatial or temporal resolution. The HAB discrimination technique has obtained accurate results on MODIS and MERIS data, correctly identifying 89% of Phaeocystis globosa HABs in the southern North Sea and 88% of Karenia mikimotoi blooms in the Western English Channel. A linear transformation of the ocean colour discriminants is used to estimate harmful cell counts, demonstrating greater accuracy than if based on chlorophyll-a; this will facilitate its integration into a HAB early warning system operating in the southern North Sea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of environmental variables on blue shark Prionace glauca catch per unit effort (CPUE) in a recreational fishery in the western English Channel, between June and September 1998–2011, was quantified using generalized additive models (GAMs). Sea surface temperature (SST) explained 1·4% of GAM deviance, and highest CPUE occurred at 16·7° C, reflecting the optimal thermal preferences of this species. Surface chlorophyll a concentration (CHL) significantly affected CPUE and caused 27·5% of GAM deviance. Additionally, increasing CHL led to rising CPUE, probably due to higher productivity supporting greater prey biomass. The density of shelf-sea tidal mixing fronts explained 5% of GAM deviance, but was non-significant, with increasing front density negatively affecting CPUE. Time-lagged frontal density significantly affected CPUE, however, causing 12·6% of the deviance in a second GAM and displayed a positive correlation. This outcome suggested a delay between the evolution of frontal features and the subsequent accumulation of productivity and attraction of higher trophic level predators, such as P. glauca.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of a quasi-stationary anticyclonic eddy within the southeastern Bay of Biscay (centred around 44°30′N-4°W) has been reported on various occasions in the bibliography. The analysis made in this study for the period 2003–2010, by using in situ and remote sensing measurements and model results shows that this mesoscale coherent structure is present almost every year from the end of winter-beginning of spring, to the beginning of fall. During this period it remains in an area limited to the east by the Landes Plateau, to the west by Le Danois Bank and Torrelavega canyon and to the northwest by the Jovellanos seamount. All the observations and analysis made in this contribution, suggest that this structure is generated between Capbreton and Torrelavega canyons. Detailed monitoring from in situ and remote sensing data of an anticyclonic quasi-stationary eddy, in 2008, shows the origin of this structure from a warm water current located around 43°42′N-3°30′W in mid-January. This coherent structure is monitored until August around the same area, where it has a marked influence on the Sea Level Anomaly, Sea Surface Temperature and surface Chlorophyll-a concentration. An eddy tracking method, applied to the outputs of a numerical model, shows that the model is able to reproduce this type of eddy, with similar 2D characteristics and lifetimes to that suggested by the observations and previous works. This is the case, for instance, of the simulated MAY04 eddy, which was generated in May 2004 around Torrelavega canyon and remained quasi-stationary in the area for 4 months. The diameter of this eddy ranged from 40 to 60 km, its azimuthal velocity was less than 20 cm s−1, its vertical extension reached 3000–3500 m depth during April and May and it was observed to interact with other coherent structures.