970 resultados para Early Warning and Nowcasting Approaches for Water Quality in Riverine and Coastal Systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prepared in cooperation with Bloomington and Normal Sanitary District.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marine plants colonise several interconnected ecosystems in the Great Barrier Reef region including tidal wetlands, seagrass meadows and coral reefs. Water quality in some coastal areas is declining from human activities. Losses of mangrove and other tidal wetland communities are mostly the result of reclamation for coastal development of estuaries, e.g. for residential use, port infrastructure or marina development, and result in river bank destabilisation, deterioration of water clarity and loss of key coastal marine habitat. Coastal seagrass meadows are characterized by small ephemeral species. They are disturbed by increased turbidity after extreme flood events, but generally recover. There is no evidence of an overall seagrass decline or expansion. High nutrient and substrate availability and low grazing pressure on nearshore reefs have lead to changed benthic communities with high macroalgal abundance. Conservation and management of GBR macrophytes and their ecosystems is hampered by scarce ecological knowledge across macrophyte community types. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Limestone-based (karstic) freshwater wetlands of the Everglades, Belize, Mexico, and Jamaica are distinctive in having a high biomass of CaCO3-rich periphyton mats. Diatoms are common components of these mats and show predictable responses to environmental variation, making them good candidates for assessing nutrient enrichment in these naturally ultraoligotrophic wetlands. However, aside from in the Everglades of southern Florida, very little research has been done to document the diatoms and their environmental preferences in karstic Caribbean wetlands, which are increasingly threatened by eutrophication. We identified diatoms in periphyton mats collected during wet and dry periods from the Everglades and similar freshwater karstic wetlands in Belize, Mexico, and Jamaica. We compared diatom assemblage composition and diversity among locations and periods, and the effect of the limiting nutrient, P, on species composition among locations. We used periphyton-mat total P (TP) as a metric of availability. A total of 176 diatom species in 45 genera were recorded from the 4 locations. Twenty-three of these species, including 9 that are considered indicative of Everglades diatom flora, were found in all 4 locations. In Everglades and Caribbean sites, we identified assemblages and indicator species associated with low and high periphyton-mat TP and calculated TP optima and tolerances for each indicator species. TP optima and tolerances of indicator species differed between the Everglades and the Caribbean, but weighted averaging models predicted periphyton-mat TP concentrations from diatom assemblages at Everglades (R2  =  0.56) and Caribbean (R2  =  0.85) locations. These results show that diatoms can be effective indicators of water quality in karstic wetlands of the Caribbean, but application of regionally generated transfer functions to distant sites provides less reliable estimates than locally developed functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research project was driven by the recurring complaints and concerns voiced in the media by residents living in the Valley area of the community of Happy Valley-Goose Bay, Labrador. Drinking water in this town is supplied by two water treatment plants (a municipality treatment plant and a DND treatment plant), which use raw water from two different sources (groundwater from multiple wells versus surface water from Spring Gulch brook) and use two different processes of drinking-water treatment. In fact, the drinking water supplied in the Valley area has a unique distribution arrangement. To meet demand, the Valley area is served by a blend of treated waters from a storage reservoir (Sandhill reservoir), which is fed by both water treatment plants. Most of the time, treated water from the municipal treatment plant dominates in the mixture. As water travels through the distribution system and household plumbing, specific reactions can occur either in the water itself and/or at the solid–liquid interface at the pipe walls; this is strongly influenced by the physical and chemical characteristics of the water. These reactions can introduce undesirable chemical compounds and/or favor the growth of bacteria in the drinking water, causing the deterioration of the quality of water reaching the consumer taps. In the distribution system in general, these chemical constituents and bacteria may pose potential threats to health or the water’s aesthetic qualities (smell, taste or appearance). Drinking water should be not only safe, but also palatable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extreme natural events, like e.g. tsunamis or earthquakes, regularly lead to catastrophes with dramatic consequences. In recent years natural disasters caused hundreds of thousands of deaths, destruction of infrastructure, disruption of economic activity and loss of billions of dollars worth of property and thus revealed considerable deficits hindering their effective management: Needs for stakeholders, decision-makers as well as for persons concerned include systematic risk identification and evaluation, a way to assess countermeasures, awareness raising and decision support systems to be employed before, during and after crisis situations. The overall goal of this study focuses on interdisciplinary integration of various scientific disciplines to contribute to a tsunami early warning information system. In comparison to most studies our focus is on high-end geometric and thematic analysis to meet the requirements of smallscale, heterogeneous and complex coastal urban systems. Data, methods and results from engineering, remote sensing and social sciences are interlinked and provide comprehensive information for disaster risk assessment, management and reduction. In detail, we combine inundation modeling, urban morphology analysis, population assessment, socioeconomic analysis of the population and evacuation modeling. The interdisciplinary results eventually lead to recommendations for mitigation strategies in the fields of spatial planning or coping capacity. © Author(s) 2009.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonpoint sources (NPS) pollution from agriculture is the leading source of water quality impairment in U.S. rivers and streams, and a major contributor to lakes, wetlands, estuaries and coastal waters (U.S. EPA 2016). Using data from a survey of farmers in Maryland, this dissertation examines the effects of a cost sharing policy designed to encourage adoption of conservation practices that reduce NPS pollution in the Chesapeake Bay watershed. This watershed is the site of the largest Total Maximum Daily Load (TMDL) implemented to date, making it an important setting in the U.S. for water quality policy. I study two main questions related to the reduction of NPS pollution from agriculture. First, I examine the issue of additionality of cost sharing payments by estimating the direct effect of cover crop cost sharing on the acres of cover crops, and the indirect effect of cover crop cost sharing on the acres of two other practices: conservation tillage and contour/strip cropping. A two-stage simultaneous equation approach is used to correct for voluntary self-selection into cost sharing programs and account for substitution effects among conservation practices. Quasi-random Halton sequences are employed to solve the system of equations for conservation practice acreage and to minimize the computational burden involved. By considering patterns of agronomic complementarity or substitution among conservation practices (Blum et al., 1997; USDA SARE, 2012), this analysis estimates water quality impacts of the crowding-in or crowding-out of private investment in conservation due to public incentive payments. Second, I connect the econometric behavioral results with model parameters from the EPA’s Chesapeake Bay Program to conduct a policy simulation on water quality effects. I expand the econometric model to also consider the potential loss of vegetative cover due to cropland incentive payments, or slippage (Lichtenberg and Smith-Ramirez, 2011). Econometric results are linked with the Chesapeake Bay Program watershed model to estimate the change in abatement levels and costs for nitrogen, phosphorus and sediment under various behavioral scenarios. Finally, I use inverse sampling weights to derive statewide abatement quantities and costs for each of these pollutants, comparing these with TMDL targets for agriculture in Maryland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this research was to investigate the effects of wetland restoration on the water balance, flushing time, and water chemistry of southern Taylor Slough, a major water way in Everglades National Park. Water balance and flushing time equations were calculated on a monthly time step from 2001 – 2011. Water chemistry of major ions and nutrients were analyzed and correlated with water flushing times. Results showed that evapotranspiration followed by water volume had the greatest influence on flushing time. The flushing times varied between 3 and 78 days, with longer times observed between October and December, and the shorter times between March and May. Ion concentrations at the coastal areas decreased with increased flushing times. Increased surface water inflow that resulted from restoration projects and water management changes were productive in the rainy season and should result in increased flushing times and decreased ion concentrations in Taylor Slough.