969 resultados para Ear Auricle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inner ear hair cells and supporting cells arise from common precursors and, in mammals, do not show phenotypic conversion. Here, we studied the role of the homeodomain transcription factor Prox1 in the inner ear sensory epithelia. Adenoviral-mediated Prox1 transduction into hair cells in explant cultures led to strong repression of Atoh1 and Gfi1, two transcription factors critical for hair cell differentiation and survival. Luciferase assays showed that Prox1 can repress transcriptional activity of Gfi1 independently of Atoh1. Prox1 transduction into cochlear outer hair cells resulted in degeneration of these cells, consistent with the known phenotype of Gfi1-deficient mice. These results together with the widespread expression of endogenous Prox1 within the population of inner ear supporting cells point to the role for Prox1 in antagonizing the hair cell phenotype in these non-sensory cells. Further, in vivo analyses of hair cells from Gfi1-deficient mice suggest that the cyclin-dependent kinase inhibitor p57(Kip2) mediates the differentiation- and survival-promoting functions of Gfi1. These data reveal novel gene interactions and show that these interactions regulate cellular differentiation within the inner ear sensory epithelia. The data point to the tight regulation of phenotypic characteristics of hair cells and supporting cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IMPLICATIONS: A new combined ear sensor was tested for accuracy in 20 critically ill children. It provides noninvasive and continuous monitoring of arterial oxygen saturation, arterial carbon dioxide tension, and pulse rate. The sensor proved to be clinically accurate in the tested range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Survey of ear flies (Diptera, Ulidiidae) in maize (Zea mays L.) and a new record of Euxesta mazorca Steyskalin Brazil. Species of Euxesta (Diptera, Ulidiidae), known as silk flies or ear flies, are becoming increasingly important as maize insect pests in South America, although very little is known about them in Brazil. The larvae of some species of this genus initially damage female reproductive tissues, and then the developing kernels on the ear. As a result of feeding, fermentation and associated odors cause complete loss of the grain because it is no longer fit for human or livestock consumption. The main objective of this work was to evaluate the incidence of Euxesta spp. in Brazilian maize fields and to determine the most prevalent species using two different hydrolyzed protein foods attractants, BioAnastrepha® (hydrolyzed maize protein) and Torula, placed inside McPhail traps. The two species identified were E. eluta Loew and E. mazorca Steyskal, the latter being a new record from Brazil. Between the two species, E. eluta was the more abundant in maize fields. Both attractants were efficient in capturing the two species. However, BioAnastrepha® captured significantly more insects than Torula.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate and compare organ doses delivered to patients in wrist and petrous bone examinations using a multislice spiral computed tomography (CT) and a C-arm cone-beam CT equipped with a flat-panel detector (XperCT). For this purpose, doses to the target organ, i.e. wrist or petrous bone, together with those to the most radiosensitive nearby organs, i.e. thyroid and eye lens, were measured and compared. Furthermore, image quality was compared for both imaging systems and different acquisition modes using a Catphan phantom. Results show that both systems guarantee adequate accuracy for diagnostic purposes for wrist and petrous bone examinations. Compared with the CT scanner, the XperCT system slightly reduces the dose to target organs and shortens the overall duration of the wrist examination. In addition, using the XperCT enables a reduction of the dose to the eye lens during head scans (skull base and ear examinations).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multisensory interactions are observed in species from single-cell organisms to humans. Important early work was primarily carried out in the cat superior colliculus and a set of critical parameters for their occurrence were defined. Primary among these were temporal synchrony and spatial alignment of bisensory inputs. Here, we assessed whether spatial alignment was also a critical parameter for the temporally earliest multisensory interactions that are observed in lower-level sensory cortices of the human. While multisensory interactions in humans have been shown behaviorally for spatially disparate stimuli (e.g. the ventriloquist effect), it is not clear if such effects are due to early sensory level integration or later perceptual level processing. In the present study, we used psychophysical and electrophysiological indices to show that auditory-somatosensory interactions in humans occur via the same early sensory mechanism both when stimuli are in and out of spatial register. Subjects more rapidly detected multisensory than unisensory events. At just 50 ms post-stimulus, neural responses to the multisensory 'whole' were greater than the summed responses from the constituent unisensory 'parts'. For all spatial configurations, this effect followed from a modulation of the strength of brain responses, rather than the activation of regions specifically responsive to multisensory pairs. Using the local auto-regressive average source estimation, we localized the initial auditory-somatosensory interactions to auditory association areas contralateral to the side of somatosensory stimulation. Thus, multisensory interactions can occur across wide peripersonal spatial separations remarkably early in sensory processing and in cortical regions traditionally considered unisensory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Newly synthesized glucose transporter 4 (GLUT4) enters into the insulin-responsive storage compartment in a process that is Golgi-localized γ-ear-containing Arf-binding protein (GGA) dependent, whereas insulin-stimulated translocation is regulated by Akt substrate of 160 kDa (AS160). In the present study, using a variety of GLUT4/GLUT1 chimeras, we have analyzed the specific motifs of GLUT4 that are important for GGA and AS160 regulation of GLUT4 trafficking. Substitution of the amino terminus and the large intracellular loop of GLUT4 into GLUT1 (chimera 1-441) fully recapitulated the basal state retention, insulin-stimulated translocation, and GGA and AS160 sensitivity of wild-type GLUT4 (GLUT4-WT). GLUT4 point mutation (GLUT4-F5A) resulted in loss of GLUT4 intracellular retention in the basal state when coexpressed with both wild-type GGA and AS160. Nevertheless, similar to GLUT4-WT, the insulin-stimulated plasma membrane localization of GLUT4-F5A was significantly inhibited by coexpression of dominant-interfering GGA. In addition, coexpression with a dominant-interfering AS160 (AS160-4P) abolished insulin-stimulated GLUT4-WT but not GLUT4-F5A translocation. GLUT4 endocytosis and intracellular sequestration also required both the amino terminus and large cytoplasmic loop of GLUT4. Furthermore, both the FQQI and the SLL motifs participate in the initial endocytosis from the plasma membrane; however, once internalized, unlike the FQQI motif, the SLL motif is not responsible for intracellular recycling of GLUT4 back to the specialized compartment. Together, we have demonstrated that the FQQI motif within the amino terminus of GLUT4 is essential for GLUT4 endocytosis and AS160-dependent intracellular retention but not for the GGA-dependent sorting of GLUT4 into the insulin-responsive storage compartment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photosynthetic activity of cereals has traditionally been studied using leaves, thus neglecting the role of other organs such as ears. Here, we studied the effects of water status and genotypes on the photosynthetic activity of the flag leaf blade and the ear of durum wheat. The various parameters related to the photosynthetic activity were analysed in relation to the total above-ground plant biomass and grain yield at maturity. Four local varieties plus two cultivars adapted to the semiarid areas of South Morocco were grown in pots in a greenhouse. Five different water treatments were maintained from the beginning of stem elongation to maturity, when shoot biomass and grain yield were recorded. The net photosynthesis (A), stomatal conductance (gs) and transpiration (T) of the ear and the flag leaf were measured at anthesis. In both organs these factors decreased significantly with water deficit, whereas the A/T and A/gs ratios increased. The genotype effect was also significant for all traits studied. Whole-organ photosynthesis was much higher in the ear than in the flag leaf in well-watered conditions. As water stress developed, photosynthesis decreased less in the ear than in the flag leaf. Whole-ear photosynthesis correlated better than flag leaf photosynthesis with biomass and yield. Nevertheless, the relationships of the whole flag leaf with biomass and yield improved as the water stress became more severe, suggesting a progressive shift of yield from sink to source limitation. For all water regimes the ratios A/gs and A/T of the ear also showed a higher (negative) correlation with both biomass and yield than those of the flag leaf. The results indicate that the ear has a greater photosynthetic role than the flag leaf in determining grain yield, not only in drought but also in the absence of stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Death of sensory hair cells in the inner ear results in two global health problems that millions of people around the world suffer: hearing loss and balance disorders. Hair cells convert sound vibrations and head movements into electrical signals that are conveyed to the brain, and as a result of aging, exposure to noise, modern drugs or genetic predisposition, hair cells die. In mammals, the great majority of hair cells are produced during embryogenesis, and hair cells that are lost after birth are not replaceable. However, in the last decades, researches have shown some model organisms that retain the ability to regenerate hair cells damaged after embryogenesis, such as Zebrafish and chicken, providing clues as to the cellular and molecular mechanisms that may block hair cell regeneration in mammals. This discovery initiated a search for methods to stimulate regeneration or replacement of hair cells in mammals, a search that, if fruitful, will revolutionize the treatment of hearing loss and balance disorders. One aim of my project is to study the role of retinoic acid in adult Zebrafish and in mice, which is a metabolite of vitamin A known as an essential molecule to activate hair cell regeneration after cells damaged in Zebrafish embryo. We want to study important genes involved in retinoic acid pathway, such as Aldh1a3 and RARs genes, to check what their role is in the inner ear of adult Zebrafish and compare result obtained in the inner ear of mice. On the other hand, Zebrafish lateral line contains neuromast, which are formed by the same structure than the inner ear: hair cells surrounded by supporting cells and neurons. The lateral line is a structure below the skin's surface that makes easier to damage hair cells to study their regeneration. For that reason, another aim of my project is to study how Sox2 and Atoh1, essential genes during the inner ear development, change their expression during hair cell regeneration in the lateral line. In my project, the most important concepts related to Zebrafish world are explained in order to understand why we have studied this animal and these essential genes. Then, techniques that we used are explained, with their protocol attached in the annexes. Finally, results of my project are shown, but many of them were not expected and they would be needed to follow studying.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To report a rare case of primary meningioma of the middle ear. METHOD: We describe the case of a 55-year-old woman who presented with decreased hearing and fullness in the left ear, with a middle-ear mass. We also review the world literature regarding primary extracranial meningioma of the middle ear and its management. RESULTS: Primary middle-ear meningioma, a rare clinical entity, was diagnosed in this patient based on an initial transmastoid biopsy. Magnetic resonance imaging with gadolinium enhancement excluded the presence of an intracranial component. Complete excision of the tumour was achieved using a combined approach tympanoplasty. The patient had an uneventful post-operative course. CONCLUSION: Meningiomas, although rare in the middle ear, need to be included in the differential diagnosis of middle-ear lesions presenting to the otolaryngologist. This case emphasises the management strategy required when dealing with a middle-ear mass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myc family members play crucial roles in regulating cell proliferation, size, and differentiation during organogenesis. Both N-myc and c-myc are expressed throughout inner ear development. To address their function in the mouse inner ear, we generated mice with conditional deletions in either N-myc or c-myc. Loss of c-myc in the inner ear causes no apparent defects, whereas inactivation of N-myc results in reduced growth caused by a lack of proliferation. Reciprocally, the misexpression of N-myc in the inner ear increases proliferation. Morphogenesis of the inner ear in N-myc mouse mutants is severely disturbed, including loss of the lateral canal, fusion of the cochlea with the sacculus and utriculus, and stunted outgrowth of the cochlea. Mutant cochleas are characterized by an increased number of cells exiting the cell cycle that express the cyclin-dependent kinase inhibitor p27Kip1 and lack cyclin D1, both of which control the postmitotic state of hair cells. Analysis of different molecular markers in N-myc mutant ears reveals the development of a rudimentary organ of Corti containing hair cells and the underlying supporting cells. Differentiated cells, however, fail to form the highly ordered structure characteristic for the organ of Corti but appear as rows or clusters with an excess number of hair cells. The Kölliker's organ, a transient structure neighboring the organ of Corti and a potential source of ectopic hair cells, is absent in the mutant ears. Collectively, our data suggest that N-myc regulates growth, morphogenesis, and pattern formation during the development of the inner ear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone morphogenetic proteins (Bmps) regulate the expression of the proneural gene Atoh1 and the generation of hair cells in the developing inner ear. The present work explored the role of Inhibitor of Differentiation genes (Id1-3) in this process. The results show that Id genes are expressed in the prosensory domains of the otic vesicle, along with Bmp4 and Bmp7. Those domains exhibit high levels of the phosphorylated form of Bmp-responding R-Smads (P-Smad1,5,8), and of Bmp-dependent Smad transcriptional activity as shown by the BRE-tk-EGFP reporter. Increased Bmp signaling induces the expression of Id1-3 along with the inhibition of Atoh1. Conversely, the Bmp antagonist Noggin or the Bmp-receptor inhibitor Dorsomorphin elicit opposite effects, indicating that Bmp signaling is necessary for Id expression and Atoh1 regulation in the otocyst. The forced expression of Id3 is sufficient to reduce Atoh1 expression and to prevent the expression of hair cell differentiation markers. Together, these results suggest that Ids are part of the machinery that mediates the regulation of hair cell differentiation exerted by Bmps. In agreement with that, during hair cell differentiation Bmp4 expression, P-Smad1,5,8 levels and Id expression are downregulated from hair cells. However, Ids are also downregulated from the supporting cells which contrarily to hair cells exhibit high levels of Bmp4 expression, P-Smad1,5,8, and BRE-tk-EGFP activity, suggesting that in these cells Ids escape from Bmp/Smad signaling. The differential regulation of Ids in time and space may underlie the multiple functions of Bmp signaling during sensory organ development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wheat plants (Triticum durum Desf., cv. Regallo) were grown in the field to study the effects of contrasting [CO2] conditions (700 versus 370 μmol mol−1) on growth, photosynthetic performance, and C management during the post-anthesis period. The aim was to test whether a restricted capacity of sink organs to utilize photosynthates drives a loss of photosynthetic capacity in elevated CO2. The ambient 13C/12C isotopic composition (δ13C) of air CO2 was changed from-10.2 in ambient [CO2] to-23.6 under elevated [CO2] between the 7th and the 14th days after anthesis in order to study C assimilation and partitioning between leaves and ears. Elevated [CO2] had no significant effect on biomass production and grain filling, and caused an accumulation of C compounds in leaves. This was accompanied by up-regulation of phosphoglycerate mutase and ATP synthase protein content, together with down-regulation of adenosine diphosphate glucose pyrophosphatase protein. Growth in elevated [CO2] negatively affected Rubisco and Rubisco activase protein content and induced photosynthetic down-regulation. CO2 enrichment caused a specific decrease in Rubisco content, together with decreases in the amino acid and total N content of leaves. The C labelling revealed that in flag leaves, part of the C fixed during grain filling was stored as starch and structural C compounds whereas the rest of the labelled C (mainly in the form of soluble sugars) was completely respired 48 h after the end of labelling. Although labelled C was not detected in the δ13C of ear total organic matter and respired CO2, soluble sugar δ13C revealed that a small amount of labelled C reached the ear. The 12CO2 labelling suggests that during the beginning of post-anthesis the ear did not contribute towards overcoming flag leaf carbohydrate accumulation, and this had a consequent effect on protein expression and photosynthetic acclimation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Spain a significant number of individuals die from atherosclerotic disease of the coronary and carotid arteries without having classic risk factors and prodromal symptoms. The diagonal ear lobe crease (DELC) has been characterized in the medical literature as a surrogate marker which can identify high risk patients having occult atherosclerosis. This topic however has not been examined in either the medical or dental literature emanating from Spain. The majority of clinical, angiography and postmortem reports support the premise that DELC is a valuable extravascular physical sign able to distinguish some patients at risk of succumbing to atherosclerosis of the coronary arteries. A minority of studies have however failed to support this hypothesis. More recently reports using B mode ultrasound have also linked DELC to atherosclerosis of the carotid artery and another report has related DELC to the presence of calcified carotid artery atheromas on panoramic radiographs. DELC is readily visible during head and neck cancer screening examinations. In conjunction with the patient"s medical history, vital signs, and panoramic radiograph, the DELC may assist in atherosclerotic risk assessment