986 resultados para EXTRACTION CHROMATOGRAPHY
Resumo:
This article presents a method employing stir bar sorptive extraction (SBSE) with in situ derivatization, in combination with either thermal or liquid desorption on-line coupled to gas chromatography-mass spectrometry for the analysis of fluoxetine in plasma samples. Ethyl chloroformate was employed as derivatizing agent producing symmetrical peaks. Parameters such as solvent polarity, time for analyte desorption, and extraction time, were evaluated. During the validation process, the developed method presented specificity, linearity (R-2 > 0.99), precision (R.S.D. < 15%), and limits of quantification (LOQ) of 30 and 1.37 pg mL(-1), when liquid and thermal desorption were employed, respectively. This simple and highly sensitive method showed to be adequate for the measurement-of fluoxetine in typical and trace concentration levels. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A new polymeric coating consisting of a dual-phase, polydimethylsiloxane (PDMS) and polypyrrole (PPY) was developed for the stir bar sorptive extraction (SBSE) of antidepressants (mirtazapine, citalopram, paroxetine, duloxetine, fluoxetine and sertraline) from plasma samples, followed by liquid chromatography analysis (SBSE/LC-UV). The extractions were based on both adsorption (PPY) and sorption (PDMS) mechanisms. SBSE variables, such as extraction time, temperature, pH of the matrix, and desorption time were optimized, in order to achieve suitable analytical sensitivity in a short time period. The PDMS/PPY coated stir bar showed high extraction efficiency (sensitivity and selectivity) toward the target analytes. The quantification limits (LOQ) of the SBSE/LC-UV method ranged from 20 ng mL(-1) to 50 ng mL(-1), and the linear range was from LOQ to 500 ng mL(-1), with a determination coefficient higher than 0.99. The inter-day precision of the SBSE/LC-UV method presented a variation coefficient lower than 15%. The efficiency of the SBSE/LC-UV method was proved by analysis of plasma samples from elderly depressed patients. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper reports on the development and optimization of a modified Quick, Easy, Cheap Effective, Rugged and Safe (QuEChERS) based extraction technique coupled with a clean-up dispersive-solid phase extraction (dSPE) as a new, reliable and powerful strategy to enhance the extraction efficiency of free low molecular-weight polyphenols in selected species of dietary vegetables. The process involves two simple steps. First, the homogenized samples are extracted and partitioned using an organic solvent and salt solution. Then, the supernatant is further extracted and cleaned using a dSPE technique. Final clear extracts of vegetables were concentrated under vacuum to near dryness and taken up into initial mobile phase (0.1% formic acid and 20% methanol). The separation and quantification of free low molecular weight polyphenols from the vegetable extracts was achieved by ultrahigh pressure liquid chromatography (UHPLC) equipped with a phodiode array (PDA) detection system and a Trifunctional High Strength Silica capillary analytical column (HSS T3), specially designed for polar compounds. The performance of the method was assessed by studying the selectivity, linear dynamic range, the limit of detection (LOD) and limit of quantification (LOQ), precision, trueness, and matrix effects. The validation parameters of the method showed satisfactory figures of merit. Good linearity (View the MathML sourceRvalues2>0.954; (+)-catechin in carrot samples) was achieved at the studied concentration range. Reproducibility was better than 3%. Consistent recoveries of polyphenols ranging from 78.4 to 99.9% were observed when all target vegetable samples were spiked at two concentration levels, with relative standard deviations (RSDs, n = 5) lower than 2.9%. The LODs and the LOQs ranged from 0.005 μg mL−1 (trans-resveratrol, carrot) to 0.62 μg mL−1 (syringic acid, garlic) and from 0.016 μg mL−1 (trans-resveratrol, carrot) to 0.87 μg mL−1 ((+)-catechin, carrot) depending on the compound. The method was applied for studying the occurrence of free low molecular weight polyphenols in eight selected dietary vegetables (broccoli, tomato, carrot, garlic, onion, red pepper, green pepper and beetroot), providing a valuable and promising tool for food quality evaluation.
Resumo:
An analytical procedure using supercritical fluid extraction (SFE) and capillary gas chromatography with electron-capture detection was developed to determine simultaneously residues of different pesticides (organochlorine, organophosphorus, organonitrogen and pyrethroid) in honey samples. Fortification experiments were conducted to test conventional extraction (liquid-liquid) and optimize the extraction procedure in SFE by varying the CO2-modifier, temperature, extraction time and pressure. Best efficiency was achieved at 400 bar using acetonitrile as modifier at 90 degreesC. For the clean-up step, Florisil cartridges were used for both methods LLE and SFE. Recoveries for majority of pesticides from fortified samples of honey at fortification level of 0.01-0.10 mg/kg ranged 75-94% from both methods. Limits of detection found were less than 0.01 mg/kg for ECD and confirmation of pesticide identity was performed by gas chromatography-mass spectrometry in selected-ion monitoring mode. The multiresidue methods in real honey samples were applied and the results of developed methods were compared. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The applicability of supercritical fluid extraction (SFE) in pesticide multiresidue analysis (organohalogen, organonitrogen, organophosphorus, and pyrethroid) in soil samples was investigated. Fortification experiments were conducted to test the conventional extraction (solid-liquid) and to optimize the extraction procedure in SFE by varying the CO2 Modifier, temperature, extraction time, and pressure. The best efficiency was achieved at 400 bar using methanol as modifier at 60 degreesC. For the SFE method, C-18 cartridges were used for the cleanup. The analytical screening was performed by gas chromatography equipped with electron-capture detection (ECD). Recoveries for the majority of pesticides from spiked samples of soil at different residence times were 1, 20, and 40 days at the fortification level of 0.04-0.10 mg/kg ranging from 70 to 97% for both methods. The detection limits found were <0.01 mg/kg for ECD, and the confirmation of pesticide identity was performed by gas chromatography-mass spectrometry in a selected-ion monitoring mode. Multiresidue methods were applied in real soil samples, and the results of the methods developed were compared.
Resumo:
The recovery of the pharmaceuticals bezafibrate and tetracycline from water was evaluated, using Solid Phase Extraction (SPE) with the aim of applying this technique to interrupt the pharmaceuticals' photodegradation by photo-Fenton process for further analysis. Sep-Pack C-18, Strata X, and Oasis HLB cartridges were evaluated. Oasis HLB showed the most satisfactory recovery and repeatability results: 98% (CV - 1%) for bezafibrate (20.0 mg L-1) and 76% (CV = 1%) for tetracycline (25.0 mg L-1). There was not a significant decrease in recovery at lower concentrations of the pharmaceuticals, and neither when present in Sewage Treatment Plant (STP) effluent matrix.
Resumo:
A simple method was developed to determine carbofuran and 3-hydroxycarbofuran in coconut water. The procedure involved solid-phase extraction using C-18 cartridges with acetonitrile for elution. The analysis of these compounds was carried out by liquid chromatography with UV detection at 275 nm using a gradient solvent system. The method was validated with fortified samples at different concentration levels (0.01-2.5 mu g/mL). Average recoveries ranged from 81 to 95% with relative standard deviation between 1.6 and 12.5%. Each recovery analysis was repeated at least five times. Detection limits ranged from 0.008 to 0.01 mu g/mL. The analytical procedure was applied to coconut water samples from palms submitted to treatment with commercial formulation under field conditions.
Resumo:
Two simple methods were developed to determine, 11 pesticides in coconut water, a natural isotonic drink rich in salts, sugars and vitamins consumed by the people and athletes. The first procedure involves solid-phase extraction using Sep-Pak Vac C-18 disposable cartridges with methanol for elution. Isocratic analysis was carried out by means of high-performance liquid chromatography with ultraviolet detection at 254 nm to analyse captan, chlorothalonil, carbendazim, lufenuron and diafenthiuron. The other procedure is based on liquid-liquid extraction with hexane-dichloromethane (1:1, v/v), followed by gas chromatographic analysis with effluent splitting to electron-capture detection for determination of endosulfan, captan, tetradifon and trichlorfon and thermionic specific detection for determination of malathion, parathion-methyl and monocrotophos. The methods were validated with fortified samples at different concentration levels (0.01-12.0 mg/kg). Average recoveries ranged from 75 to 104% with relative standard deviations between 1.4 and 11.5%. Each recovery analysis was repeated at least five times. Limits of detection ranged from 0.002 to 2.0 mg/kg. The analytical procedures were applied to 15 samples and no detectable amounts of the pesticides were found in any samples under the conditions described. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
A fast, simple, non-destructive method for the direct screening of polycyclic aromatic hydrocarbons (PAHs) in vegetable oil samples is proposed. The method uses a supercritical fluid extraction (SFE) system coupled on-line with a fluorimetric detector to determine PAHs. This special assembly avoids the main problems encountered in the determination of PAHs in complex matrices such as vegetable oils. PAHs are selectively extracted by using silica gel in the thimble and cleaned up by passage through a C18 column. Interferences are preferentially retained by the silica gel during the SFE process while PAHs are adsorbed in the C18 column and the remainder of the matrix is sent to waste. Finally, the C18 column is purged to remove residual CO2 gas and adsorbed PAHs are recovered by desorption with a solvent. The extracts from positive samples are subsequently analyzed by liquid chromatography (LC) with fluorescence detection. The proposed method allows the confirmation of vegetable oil safety and hence provides a new tool for consumer protection. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Supercritical fluid extraction with CO2, Performed in a home-made system, of rhizomes of Dorstenia bryoniifolia Mart. ex Miq. (Moraceae) and of bark roots of Brosimum gaudichaudii Trecul (Moraceae) afforded crude extracts that were analysed by high resolution gas chromatography (HRGC). The D. bryoniifolia extract contained, besides the previously reported pimpinelin and isobergapten, the furocoumarins psoralen, bergapten, isopimpinelin and the triterpenes alpha- and beta-amyrin and the acetate of the latter. The B. gaudichaudii extract contained a number of terpenoids as well as the previously reported psoralen and bergapten. Supercritical fluid extraction gave extracts qualitatively similar to those obtained by Soxhlet extraction with hexane and, together with off-line HRGC, was shown to be a fast and accurate technique to be used in rapid phytochemical examination.
Resumo:
The incomplete combustion of biomass is one of the most important sources of emissions of organic compounds into the atmosphere, like polycyclic aromatic hydrocarbons (PAHs) which show genotoxic activity. Since environmental samples generally contain interferents and trace amounts of PAHs of interest, concentration and clean-up procedures are usually required prior to the final chromatographic analysis. This paper discusses the performance of Sep-Pak cartridges (silica gel and RP18) on clean-up of sugar cane soot extract. The best results were obtained with a silica Sep-Pak cartridge. The recoveries ranged from 79% (benzo[b]fluoranthene) to 113% (benzo[e]pyrene). (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
A simultaneous method for the trace determination of acidic, neutral herbicides and their transformation products in estuarine waters has been developed through an on-line solid-phase extraction method followed by liquid chromatography with diode array and mass spectrometric detection. An atmospheric pressure chemical ionization (APCI) interface was used in the negative ionization mode after optimization of the main APCI parameters. Limits of detection ranged from 0.1 to 0.02 ng/ml for 50 mi of acidified estuarine waters preconcentrated into polymeric precolumns and using time-scheduled selected ion monitoring mode. Two degradation products of the acidic herbicides (4-chloro-2-methylphenol and 2,4-dichlorophenol) did not show good signal response using APCI-MS at the concentration studied due to the higher fragmentor voltage needed for their determination For molinate and the major degradation product of propanil, 3,4-dichloroaniline, positive ion mode was needed for APCI-MS detection. The proposed method was applied to the determination of herbicides in drainage waters from rice fields of the Delta del Ebro (Spain). During the S-month monitoring of the herbicides, 8-hydroxybentazone and 4-chloro-2-methylphenoxyacetic acid were successively found in those samples. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
A rapid and simple method was developed for quantitation of polar compounds in fats and oils using monostearin as internal standard. Starting from 50 mg of oil sample, polar compounds were obtained by solid-phase extraction (silica cartridges) and subsequently separated by high-performance size-exclusion chromatography into triglyceride polymers, triglyceride dimers, oxidized triglyceride monomers, diglycerides, internal standard and fatty acids. Quantitation of total polar compounds was achieved through the internal standard method and then amounts of each group of compounds could be calculated. A pool of polar compounds was used to check linearity, precision and accuracy of the method, as well as the solid-phase extraction recovery. The procedure was applied to samples with different content of polar compounds and good quantitative results were obtained, especially for samples of low alteration level.
Resumo:
Gas chromatography with mass spectrometry is frequently used for the quantification of many classes of substances, including alkylphenols. Alkylphenol polyethoxylates are nonionic surfactants used in a wide variety of industrial and consumer applications. Alkylphenol polyethoxylates can degrade to alkylphenols, which are endocrine disruptors. In analytical validation procedures, the most common parameters studied are the detection and quantification limits, linearity, and recovery; however, the matrix effects are sometimes neglected. Although some investigators have evaluated matrix effects, there is no consensus on how to evaluate them during method validation. In this study, the matrix effects of alkylphenol polyethoxylates (nonylphenol monoethoxylate, nonylphenol diethoxylate, octylphenol monoethoxylate, octylphenol diethoxylate) and alkylphenols (nonylphenol and octylphenol) were studied using solid phase extraction and gas chromatography-mass spectrometry analysis. For alkylphenol polyethoxylates, the matrix effects ranged from 16 to 4692%, whereas for alkylphenols (nonylphenol and octylphenol), the effects were insignificant. Therefore, constructing an analytical curve in the matrix for alkylphenol polyethoxylates is essential. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Carnitine is an amino acid derivative that plays a key role in energy metabolism. Endogenous carnitine is found in its free form or esterified with acyl groups of several chain lengths. Quantification of carnitine and acylcarnitines is of particular interest for screening for research and metabolic disorders. We developed a method with online solid-phase extraction coupled to high-performance liquid chromatography and tandem mass spectrometry to quantify carnitine and three acylcarnitines with different polarity (acetylcarnitine, octanoylcarnitine, and palmitoylcarnitine). Plasma samples were deproteinized with methanol, loaded on a cation exchange trapping column and separated on a reversed-phase C8 column using heptafluorobutyric acid as an ion-pairing reagent. Considering the endogenous nature of the analytes, we quantified with the standard addition method and with external deuterated standards. Solid-phase extraction and separation were achieved within 8 min. Recoveries of carnitine and acylcarnitines were between 98 and 105 %. Both quantification methods were equally accurate (all values within 84 to 116 % of target concentrations) and precise (day-to-day variation of less than 18 %) for all carnitine species and concentrations analyzed. The method was used successfully for determination of carnitine and acylcarnitines in different human samples. In conclusion, we present a method for simultaneous quantification of carnitine and acylcarnitines with a rapid sample work-up. This approach requires small sample volumes and a short analysis time, and it can be applied for the determination of other acylcarnitines than the acylcarnitines tested. The method is useful for applications in research and clinical routine.