944 resultados para EX-VIVO
Resumo:
Immunotherapy of melanoma is aimed to mobilize cytolytic CD8+ T cells playing a central role in protective immunity. Despite numerous clinical vaccine trials, only few patients exhibited strong antigen-specific T-cell activation, stressing the need to improve vaccine strategies. For a rational development, we propose to focus on molecularly defined vaccine components, and evaluate their immunogenicity with highly reproducible and standardized methods for ex vivo immune monitoring. Careful immunogenicity comparison of vaccine formulations in phase I/II studies allow to select optimized vaccines for subsequent clinical efficacy testing in large scale phase III trials.
Resumo:
Successful expansion of haematopoietic cells in ex vivo cultures will have important applications in transplantation, gene therapy, immunotherapy and potentially also in the production of non-haematopoietic cell types. Haematopoietic stem cells (HSC), with their capacity to both self-renew and differentiate into all blood lineages, represent the ideal target for expansion protocols. However, human HSC are rare, poorly characterized phenotypically and genotypically, and difficult to test functionally. Defining optimal culture parameters for ex vivo expansion has been a major challenge. We devised a simple and reproducible stroma-free liquid culture system enabling long-term expansion of putative haematopoietic progenitors contained within frozen human fetal liver (FL) crude cell suspensions. Starting from a small number of total nucleated cells, a massive haematopoietic cell expansion, reaching > 1013-fold the input cell number after approximately 300 d of culture, was consistently achieved. Cells with a primitive phenotype were present throughout the culture and also underwent a continuous expansion. Moreover, the capacity for multilineage lymphomyeloid differentiation, as well as the recloning capacity of primitive myeloid progenitors, was maintained in culture. With its better proliferative potential as compared with adult sources, FL represents a promising alternative source of HSC and the culture system described here should be useful for clinical applications.
Resumo:
Introduction: Surgery represents the treatment of choice for localized renal cell neoplasia. Partial nephrectomy (PN) has widened its indications over the past two decades and has shown oncological results equivalent to radical nephrectomy for small tumors. The role of negative surgical margins has been widely debated. Intraoperative fresh frozen section analysis is shown to be unreliable, expensive, time-consuming and not well correlated to final pathology. The goal of the present study was to assess the feasibility of intraoperative ex-vivo ultrasound (US) control of resection margins and its correlation to margin status at definitive pathology in patients undergoing PN.Material and Methods: The study was carried out in our institution from February 2008 to March 2010. Patients undergoing PN for T1-T2 renal tumors were included. Ex vivo US was performed by one single senior radiologist. Considering its availability, not all consecutive eligible patients were included. PN was undertaken in a standardized technique applying the "minimal healthy tissue margin" technique. Once resected, the specimen was kept in a saline solution and ex-vivo US was performed to evaluate the whole tumor pseudocapsule.Results: Twelve patients (five women, age (mean}SD) 65}11 years) were included. Intraoperative ex-vivo US showed negative surgical margin in all cases. US duration ranged from 1 to 4 minutes, with a median time of 1 minute. Definitive histological analysis confirmed the presence of two angiomyolipoma, eight pT1a tumors, of which seven were clear cell carcinoma and one was a type II papillary tumor, one pT1b clear cell carcinoma and one pT2 chromophobe carcinoma (size 2.9}2.3 cm). Final pathology revealed R0 margins.Conclusion: Intraoperative ex-vivo US control of resection margins in patients undergoing PN is feasible, time-efficient and well correlated to definitive pathological examination with regards to margin status.
Resumo:
Pyrimethamine is used as and anti-infectious agent because of its antifolate properties. Its action is synergistic with that of dapsone and sulfamides on Toxoplasma gondii. The goal of the present study was to evaluate the placental transfer of pyrimethamine in an ex vivo model of perfused human placental cotyledon at term. Human placentas were perfused according to the slightly modified method of Schneider. The pyrimethamine fetal transfer rate was approximately 30%, while cotyledon clearance was about 1.8 ml/min. The placental transfer of pyrimethamine seems to be independent of the maternal concentrations of pyrimethamine, suggesting passive diffusion mechanisms or a nonsaturable active transport at the tested concentrations.
Resumo:
Humans differ substantially with respect to susceptibility to human immunodeficiency virus type 1 (HIV-1). We evaluated variants of nine host genes participating in the viral life cycle for their role in modulating HIV-1 infection. Alleles were assessed ex vivo for their impact on viral replication in purified CD4 T cells from healthy blood donors (n = 128). Thereafter, candidate alleles were assessed in vivo in a cohort of HIV-1-infected individuals (n = 851) not receiving potent antiretroviral therapy. As a benchmark test, we tested 12 previously reported host genetic variants influencing HIV-1 infection as well as single nucleotide polymorphisms in the nine candidate genes. This led to the proposition of three alleles of PML, TSG101, and PPIA as potentially associated with differences in progression of HIV-1 disease. In a model considering the combined effects of new and previously reported gene variants, we estimated that their effect might be responsible for lengthening or shortening by up to 2.8 years the period from 500 CD4 T cells/mul to <200 CD4 T cells/mul.
Resumo:
We investigated the association of trabecular bone score (TBS) with microarchitecture and mechanical behavior of human lumbar vertebrae. We found that TBS reflects vertebral trabecular microarchitecture and is an independent predictor of vertebral mechanics. However, the addition of TBS to areal BMD (aBMD) did not significantly improve prediction of vertebral strength. INTRODUCTION: The trabecular bone score (TBS) is a gray-level measure of texture using a modified experimental variogram which can be extracted from dual-energy X-ray absorptiometry (DXA) images. The current study aimed to confirm whether TBS is associated with trabecular microarchitecture and mechanics of human lumbar vertebrae, and if its combination with BMD improves prediction of fracture risk. METHODS: Lumbar vertebrae (L3) were harvested fresh from 16 donors. The anteroposterior and lateral bone mineral content (BMC) and areal BMD (aBMD) of the vertebral body were measured using DXA; then, the TBS was extracted using TBS iNsight software (Medimaps SA, France). The trabecular bone volume (Tb.BV/tissue volume, TV), trabecular thickness (Tb.Th), degree of anisotropy, and structure model index (SMI) were measured using microcomputed tomography. Quasi-static uniaxial compressive testing was performed on L3 vertebral bodies to assess failure load and stiffness. RESULTS: The TBS was significantly correlated to Tb.BV/TV and SMI (râeuro0/00=âeuro0/000.58 and -0.62; pâeuro0/00=âeuro0/000.02, 0.01), but not related to BMC and BMD. TBS was significantly correlated with stiffness (râeuro0/00=âeuro0/000.64; pâeuro0/00=âeuro0/000.007), independently of bone mass. Using stepwise multiple regression models, we failed to demonstrate that the combination of BMD and TBS was better at explaining mechanical behavior than either variable alone. However, the combination TBS, Tb.Th, and BMC did perform better than each parameter alone, explaining 79Â % of the variability in stiffness. CONCLUSIONS: In our study, TBS was associated with microarchitecture parameters and with vertebral mechanical behavior, but TBS did not improve prediction of vertebral biomechanical properties in addition to aBMD.
Resumo:
The authors developed a standardized approach for immune monitoring of antigen-specific CD8+ T cells within peripheral blood lymphocytes (PBLs) that combines direct ex vivo analysis of Melan-A/MART-1 and influenza-specific CD8+ T cells with HLA-A2/peptide multimers and interferon-gamma ELISPOT assays. Here the authors assessed the quality of results obtained with 180 PBLs from healthy donors and melanoma patients. Reproducibility of the multimer assay was good (average of 15% variation). In the absence of in vivo antigen-specific T-cell responses, physiologic fluctuations of multimer-positive T cells was low, with variation coefficients of 20% for Melan-A and 28% for influenza-specific T cells. In contrast, patients with vaccination-induced T-cell responses had significantly increased T-cell frequencies clearly exceeding physiologic fluctuations. Comparable results were obtained with ELISPOT assays. In conclusion, this approach is well suited to assess T-cell responses as biologic endpoints in clinical vaccine studies.
Resumo:
Alloreactive T cells are thought to be a potentially rich source of high-avidity T cells with therapeutic potential since tolerance to self-Ags is restricted to self-MHC recognition. Given the particularly high frequency of alloreactive T cells in the peripheral immune system, we used numerous MHC class I multimers to directly visualize and isolate viral and tumor Ag-specific alloreactive CD8 T cells. In fact, all but one specificities screened were undetectable in ex vivo labeling. In this study, we report the occurrence of CD8 T cells specifically labeled with allo-HLA-A*0201/Melan-A/MART-1(26-35) multimers at frequencies that are in the range of 10(-4) CD8 T cells and are thus detectable ex vivo by flow cytometry. We report the thymic generation and shaping of tumor Ag-specific, alloreactive T cells as well as their fate once seeded in the periphery. We show that these cells resemble their counterparts in HLA-A*0201-positive individuals, based on their structural and functional attributes.
Resumo:
BACKGROUND: Intimal hyperplasia (IH) is a vascular remodeling process which often leads to failure of arterial bypass or hemodialysis access. Experimental and clinical work have provided insight in IH development; however, further studies under precise controlled conditions are required to improve therapeutic strategies to inhibit IH development. Ex vivo perfusion of human vessel segments under standardized hemodynamic conditions may provide an adequate experimental approach for this purpose. Therefore, chronically perfused venous segments were studied and compared to traditional static culture procedures with regard to functional and histomorphologic characteristics as well as gene expression. MATERIALS AND METHODS: Static vein culture allowing high tissue viability was performed as previously described. Ex vivo vein support system (EVVSS) was performed using a vein support system consisting of an incubator with a perfusion chamber and a pump. EVVSS allows vessel perfusion under continuous flow while maintaining controlled hemodynamic conditions. Each human saphenous vein was divided in two parts, one cultured in a Pyrex dish and the other part perfused in EVVSS for 14days. Testing of vasomotion, histomorphometry, expression of CD 31, Factor VIII, MIB 1, alpha-actin, and PAI-l were determined before and after 14days of either experimental conditions. RESULTS: Human venous segments cultured under traditional or perfused conditions exhibited similar IH after 14 days as shown by histomorphometry. Smooth-muscle cell (SMC) was preserved after chronic perfusion. Although integrity of both endothelial and smooth-muscle cells appears to be maintained in both culture conditions as confirmed by CD31, factor VIII, and alpha-actin expression, a few smooth-muscle cells in the media stained positive for factor VIII. Cell-proliferation marker MIB-1 was also detected in the two settings and PAI-1 mRNA expression and activity increased significantly after 14 days of culture and perfusion. CONCLUSION: This study demonstrates the feasibility to chronically perfuse human vessels under sterile conditions with preservation of cellular integrity and vascular contractility. To gain insights into the mechanisms leading to IH, it will now be possible to study vascular remodeling not only under static conditions but also in hemodynamic environment mimicking as closely as possible the flow conditions encountered in reconstructive vascular surgery.
Resumo:
The mainstay of contemporary therapies for extensive occlusive arterial disease is venous bypass graft. However, its durability is threatened by intimal hyperplasia (IH) that eventually leads to vessel occlusion and graft failure. Mechanical forces, particularly low shear stress and high wall tension, are thought to initiate and to sustain these cellular and molecular changes, but their exact contribution remains to be unraveled. To selectively evaluate the role of pressure and shear stress on the biology of IH, an ex vivo perfusion system (EVPS) was created to perfuse segments of human saphenous veins under arterial regimen (high shear stress and high pressure). Further technical innovations allowed the simultaneous perfusion of two segments from the same vein, one reinforced with an external mesh. Veins were harvested using a no-touch technique and immediately transferred to the laboratory for assembly in the EVPS. One segment of the freshly isolated vein was not perfused (control, day 0). The two others segments were perfused for up to 7 days, one being completely sheltered with a 4 mm (diameter) external mesh. The pressure, flow velocity, and pulse rate were continuously monitored and adjusted to mimic the hemodynamic conditions prevailing in the femoral artery. Upon completion of the perfusion, veins were dismounted and used for histological and molecular analysis. Under ex vivo conditions, high pressure perfusion (arterial, mean = 100 mm Hg) is sufficient to generate IH and remodeling of human veins. These alterations are reduced in the presence of an external polyester mesh.
Resumo:
Introduction & Objectives: Surgery remains the treatment of choice for localized renal cell neoplasia. While radical nephrectomy was long considered as gold standard, partial nephrectomy (PN) has widened its indications over the past twodecades and has shown oncological results equivalent to radical nephrectomy for small tumors. Moreover, it is considered superior to radical nephrectomy in terms of non-cancer related mortality. The role of negative surgical margin has been widely debated. Intraoperative frozen section analysis has been shown to be unreliable, expensive, time-consuming and not well correlated to final pathology. The goal of the present study was to assess the correlation of intraoperative exvivo ultrasonographic (US) evaluation of resection margin to definitive pathology in patients undergoing PN.Materials & Methods: An observational study was carried out in ours 2 institutions from February 2008 to October 2010. Patients undergoing PN for T1-T2 renal tumors were included. Ex vivo US evaluation was performed. Considering availability of US engine, not all consecutive eligible patients were included. PN was undertaken either by open surgery or laparoscopic access in a standardized technique. The "minimal healthy tissue margin" technique was applied. Once resected, the specimen was kept in a saline solution and US determination of tumor margins was performed. Sequential images were captured in order to evaluate the whole capsule.Results: Twenty-two patients (9 women, age 63±11 years[46-78]) were included in the present analysis. Open or laparoscopic PN was performed in 19 and 3 patients, respectively. Intraoperative ex-vivo US showed negative surgical margin in all cases except one, needing a complementary renal parenchyma resection. US duration ranged from 1 to 4 minutes, with a median time of 1 minute. Definitive histological analysis confirmed the presence of 3 angiomyolipoma, 15 clear cell carcinoma (11 pT1a,3 pT1b,1 pT2), 3 chromophobe carcinoma (1 pT1a,1 pT1b,1 pT2) and 1 pT1a type II papillary tumor. Mean tumor size was 3,4±2.1 cm [0,6-7,2]. Final pathology revealed R0 margins in all cases.Conclusions: Intraoperative ex-vivo US evaluation of resection margin in patients undergoing PN is feasible, time-efficient, well correlated to definitive pathological examination, and should be evaluated in further prospective trials.
Resumo:
Vessel wall trauma induces vascular remodeling processes including the development of intimal hyperplasia (IH). To assess the development of IH in human veins, we have used an ex vivo vein support system (EVVSS) allowing the perfusion of freshly isolated segments of saphenous veins in the presence of a pulsatile flow which reproduced arterial conditions regarding shear stress, flow rate and pressure during a period of 7 and 14 days. Compared to the corresponding freshly harvested human veins, histomorphometric analysis showed a significant increase in the intimal thickness which was already maximal after 7 days of perfusion. Expression of the endothelial marker CD31 demonstrated the presence of endothelium up to 14 days of perfusion. In our EVVSS model, the activity as well as the mRNA and protein expression levels of plasminogen activator inhibitor 1, the inhibitor of urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA), were increased after 7 days of perfusion, whereas the expression levels of tPA and uPA were not altered. No major change was observed between 7 and 14 days of perfusion. These data show that our newly developed EVVSS is a valuable setting to study ex vivo remodeling of human veins submitted to a pulsatile flow.
Resumo:
The relatively low frequencies of tumor Ag-specific T-cells in PBMC and metastases from cancer patients have long precluded the analysis of their direct ex vivo cytolytic capacity. Using a new composite technique that works well with low cell numbers, we aimed at determining the functional competence of melanoma-specific CD8(+) T-cells. A multiparameter flow cytometry based technique was applied to assess the cytolytic function, degranulation and IFNγ production by tumor Ag-specific CD8(+) T-cells from PBMC and tumor-infiltrated lymph nodes (TILN) of melanoma patients. We found strong cytotoxicity by T-cells not only when they were isolated from PBMC but also from TILN. Cytotoxicity was observed against peptide-pulsed target cells and melanoma cells presenting the naturally processed endogenous antigen. However, unlike their PBMC-derived counterparts, T-cells from TILN produced only minimal amounts of IFNγ, while exhibiting similar levels of degranulation, revealing a critical functional dichotomy in metastatic lesions. Our finding of partial functional impairment fits well with the current knowledge that T-cells from cancer metastases are so-called exhausted, a state of T-cell hyporesponsiveness also found in chronic viral infections. The identification of responsible mechanisms in the tumor microenvironment is important for improving cancer therapies.