912 resultados para EVENT RELATED
Resumo:
Abstract. Different types of mental activity are utilised as an input in Brain-Computer Interface (BCI) systems. One such activity type is based on Event-Related Potentials (ERPs). The characteristics of ERPs are not visible in single-trials, thus averaging over a number of trials is necessary before the signals become usable. An improvement in ERP-based BCI operation and system usability could be obtained if the use of single-trial ERP data was possible. The method of Independent Component Analysis (ICA) can be utilised to separate single-trial recordings of ERP data into components that correspond to ERP characteristics, background electroencephalogram (EEG) activity and other components with non- cerebral origin. Choice of specific components and their use to reconstruct “denoised” single-trial data could improve the signal quality, thus allowing the successful use of single-trial data without the need for averaging. This paper assesses single-trial ERP signals reconstructed using a selection of estimated components from the application of ICA on the raw ERP data. Signal improvement is measured using Contrast-To-Noise measures. It was found that such analysis improves the signal quality in all single-trials.
Resumo:
This paper outlines a method for automatic artefact removal from multichannel recordings of event-related potentials (ERPs). The proposed method is based on, firstly, separation of the ERP recordings into independent components using the method of temporal decorrelation source separation (TDSEP). Secondly, the novel lagged auto-mutual information clustering (LAMIC) algorithm is used to cluster the estimated components, together with ocular reference signals, into clusters corresponding to cerebral and non-cerebral activity. Thirdly, the components in the cluster which contains the ocular reference signals are discarded. The remaining components are then recombined to reconstruct the clean ERPs.
Resumo:
Current methods for estimating event-related potentials (ERPs) assume stationarity of the signal. Empirical Mode Decomposition (EMD) is a data-driven decomposition technique that does not assume stationarity. We evaluated an EMD-based method for estimating the ERP. On simulated data, EMD substantially reduced background EEG while retaining the ERP. EMD-denoised single trials also estimated shape, amplitude, and latency of the ERP better than raw single trials. On experimental data, EMD-denoised trials revealed event-related differences between two conditions (condition A and B) more effectively than trials lowpass filtered at 40 Hz. EMD also revealed event-related differences on both condition A and condition B that were clearer and of longer duration than those revealed by low-pass filtering at 40 Hz. Thus, EMD-based denoising is a promising data-driven, nonstationary method for estimating ERPs and should be investigated further.
Resumo:
The human mirror neuron system (hMNS) has been associated with various forms of social cognition and affective processing including vicarious experience. It has also been proposed that a faulty hMNS may underlie some of the deficits seen in the autism spectrum disorders (ASDs). In the present study we set out to investigate whether emotional facial expressions could modulate a putative EEG index of hMNS activation (mu suppression) and if so, would this differ according to the individual level of autistic traits [high versus low Autism Spectrum Quotient (AQ) score]. Participants were presented with 3 s films of actors opening and closing their hands (classic hMNS mu-suppression protocol) while simultaneously wearing happy, angry, or neutral expressions. Mu-suppression was measured in the alpha and low beta bands. The low AQ group displayed greater low beta event-related desynchronization (ERD) to both angry and neutral expressions. The high AQ group displayed greater low beta ERD to angry than to happy expressions. There was also significantly more low beta ERD to happy faces for the low than for the high AQ group. In conclusion, an interesting interaction between AQ group and emotional expression revealed that hMNS activation can be modulated by emotional facial expressions and that this is differentiated according to individual differences in the level of autistic traits. The EEG index of hMNS activation (mu suppression) seems to be a sensitive measure of the variability in facial processing in typically developing individuals with high and low self-reported traits of autism.
Resumo:
Previous research suggests that the processing of agreement is affected by the distance between the agreeing elements. However, the unique contribution of structural distance (number of intervening syntactic phrases) to the processing of agreement remains an open question, since previous investigations do not tease apart structural and linear distance (number of intervening words). We used event related potentials (ERPs) to examine the extent to which structural distance impacts the processing of Spanish number and gender agreement. Violations were realized both within the phrase and across the phrase. Across both levels of structural distance, linear distance was kept constant, as was the syntactic category of the agreeing elements. Number and gender agreement violations elicited a robust P600 between 400 and 900ms, a component associated with morphosyntactic processing. No amplitude differences were observed between number and gender violations, suggesting that the two features are processed similarly at the brain level. Within-phrase agreement yielded more positive waveforms than across-phrase agreement, both for agreement violations and for grammatical sentences (no agreement by distance interaction). These effects can be interpreted as evidence that structural distance impacts the establishment of agreement overall, consistent with sentence processing models which predict that hierarchical structure impacts the processing of syntactic dependencies. However, due to the lack of an agreement by distance interaction, the possibility cannot be ruled out that these effects are driven by differences in syntactic predictability between the within-phrase and across-phrase configurations, notably the fact that the syntactic category of the critical word was more predictable in the within-phrase conditions.
Resumo:
This cross-sectional study examines the role of L1-L2 differences and structural distance in the processing of gender and number agreement by English-speaking learners of Spanish at three different levels of proficiency. Preliminary results show that differences between the L1 and L2 impact L2 development, as sensitivity to gender agreement violations, as opposed to number agreement violations, emerges only in learners at advanced levels of proficiency. Results also show that the establishment of agreement dependencies is impacted by the structural distance between the agreeing elements for native speakers and for learners at intermediate and advanced levels of proficiency but not for low proficiency. The overall pattern of results suggests that the linguistic factors examined here impact development but do not constrain ultimate attainment; for advanced learners, results suggest that second language processing is qualitatively similar to native processing.
Resumo:
Different theoretical accounts of second language (L2) acquisition differ with respect to whether or not advanced learners are predicted to show native like processing for features not instantiated in the native language (L1). We examined how native speakers of English, a language with number but not gender agreement, process number and gender agreement in Spanish. We compare agreement within a determiner phrase (órgano muy complejo “[DP organ-MASC-SG very complex-MASC-SG]”) and across a verb phrase (cuadro es auténtico “painting-MASC-SG [VP is authentic-MASC-SG]”) in order to investigate whether native like processing is limited to local domains (e.g. within the phrase), in line with Clahsen and Felser (2006). We also examine whether morphological differences in how the L1 and L2 realize a shared feature impact processing by comparing number agreement between nouns and adjectives, where only Spanish instantiates agreement, and between demonstratives and nouns, where English also instantiates agreement. Similar to Spanish natives, advanced learners showed a P600 for both number and gender violations overall, in line with the Full Transfer/Full Access Hypothesis (Schwartz and Sprouse, 1996), which predicts that learners can show native-like processing for novel features. Results also show that learners can establish syntactic dependencies outside of local domains, as suggested by the presence of a P600 for both within and across phrase violations. Moreover, similar to native speakers, learners were impacted by the structural distance (number of intervening phrases) between the agreeing elements, as suggested by the more positive waveforms for within than across-phrase agreement overall. These results are consistent with the proposal that learners are sensitive to hierarchical structure.
Resumo:
Background Event-related desynchronization/synchronization (ERD/ERS) is a relative power decrease/increase of electroencephalogram (EEG) in a specific frequency band during physical motor execution and mental motor imagery, thus it is widely used for the brain-computer interface (BCI) purpose. However what the ERD really reflects and its frequency band specific role have not been agreed and are under investigation. Understanding the underlying mechanism which causes a significant ERD would be crucial to improve the reliability of the ERD-based BCI. We systematically investigated the relationship between conditions of actual repetitive hand movements and resulting ERD. Methods Eleven healthy young participants were asked to close/open their right hand repetitively at three different speeds (Hold, 1/3 Hz, and 1 Hz) and four distinct motor loads (0, 2, 10, and 15 kgf). In each condition, participants repeated 20 experimental trials, each of which consisted of rest (8–10 s), preparation (1 s) and task (6 s) periods. Under the Hold condition, participants were instructed to keep clenching their hand (i.e., isometric contraction) during the task period. Throughout the experiment, EEG signals were recorded from left and right motor areas for offline data analysis. We obtained time courses of EEG power spectrum to discuss the modulation of mu and beta-ERD/ERS due to the task conditions. Results We confirmed salient mu-ERD (8–13 Hz) and slightly weak beta-ERD (14–30 Hz) on both hemispheres during repetitive hand grasping movements. According to a 3 × 4 ANOVA (speed × motor load), both mu and beta-ERD during the task period were significantly weakened under the Hold condition, whereas no significant difference in the kinetics levels and interaction effect was observed. Conclusions This study investigates the effect of changes in kinematics and kinetics on resulting ERD during repetitive hand grasping movements. The experimental results suggest that the strength of ERD may reflect the time differentiation of hand postures in motor planning process or the variation of proprioception resulting from hand movements, rather than the motor command generated in the down stream, which recruits a group of motor neurons.
Resumo:
The objective of this study was to perform a systematic review regarding the effects of transcranial magnetic stimulation (TMS) on the cognitive event-related potential P300. A search was performed of the PubMed database, using the keywords "transcranial magnetic stimulation" and "P300." Eight articles were selected and, after analysis of references, one additional article was added to the list. We found the comparison among studies to be difficult, as the information regarding the effects of TMS on P300 is both scarce and heterogeneous with respect to the parameters used in TMS stimulation and the elicitation of P300. However, 7 of 9 studies found positive results. New studies need to be carried out in order to understand the contribution of these variables and others to the alteration in the latency and amplitude of the P300 wave.
Resumo:
In this thesis, the main Executive Control theories are exposed. Methods typical of Cognitive and Computational Neuroscience are introduced and the role of behavioural tasks involving conflict resolution in the response elaboration, after the presentation of a stimulus to the subject, are highlighted. In particular, the Eriksen Flanker Task and its variants are discussed. Behavioural data, from scientific literature, are illustrated in terms of response times and error rates. During experimental behavioural tasks, EEG is registered simultaneously. Thanks to this, event related potential, related with the current task, can be studied. Different theories regarding relevant event related potential in this field - such as N2, fERN (feedback Error Related Negativity) and ERN (Error Related Negativity) – are introduced. The aim of this thesis is to understand and simulate processes regarding Executive Control, including performance improvement, error detection mechanisms, post error adjustments and the role of selective attention, with the help of an original neural network model. The network described here has been built with the purpose to simulate behavioural results of a four choice Eriksen Flanker Task. Model results show that the neural network can simulate response times, error rates and event related potentials quite well. Finally, results are compared with behavioural data and discussed in light of the mentioned Executive Control theories. Future perspective for this new model are outlined.
Resumo:
Negative biases in implicit self-evaluation are thought to be detrimental to subjective well-being and have been linked to various psychological disorders, including depression. An understanding of the neural processes underlying implicit self-evaluation in healthy subjects could provide a basis for the investigation of negative biases in depressed patients, the development of differential psychotherapeutic interventions, and the estimation of relapse risk in remitted patients. We thus studied the brain processes linked to implicit self-evaluation in 25 healthy subjects using event-related potential (ERP) recording during a self-relevant Implicit Association Test (sIAT). Consistent with a positive implicit self-evaluation in healthy subjects, they responded significantly faster to the congruent (self-positive mapping) than to the incongruent sIAT condition (self-negative mapping). Our main finding was a topographical ERP difference in a time window between 600 and 700 ms, whereas no significant differences between congruent and incongruent conditions were observed in earlier time windows. This suggests that biases in implicit self-evaluation are reflected only indirectly, in the additional recruitment of control processes needed to override the positive implicit self-evaluation of healthy subjects in the incongruent sIAT condition. Brain activations linked to these control processes can thus serve as an indirect measure for estimating biases in implicit self-evaluation. The sIAT paradigm, combined with ERP, could therefore permit the tracking of the neural processes underlying implicit self-evaluation in depressed patients during psychotherapy.
Resumo:
Triggered event-related functional magnetic resonance imaging requires sparse intervals of temporally resolved functional data acquisitions, whose initiation corresponds to the occurrence of an event, typically an epileptic spike in the electroencephalographic trace. However, conventional fMRI time series are greatly affected by non-steady-state magnetization effects, which obscure initial blood oxygen level-dependent (BOLD) signals. Here, conventional echo-planar imaging and a post-processing solution based on principal component analysis were employed to remove the dominant eigenimages of the time series, to filter out the global signal changes induced by magnetization decay and to recover BOLD signals starting with the first functional volume. This approach was compared with a physical solution using radiofrequency preparation, which nullifies magnetization effects. As an application of the method, the detectability of the initial transient BOLD response in the auditory cortex, which is elicited by the onset of acoustic scanner noise, was used to demonstrate that post-processing-based removal of magnetization effects allows to detect brain activity patterns identical with those obtained using the radiofrequency preparation. Using the auditory responses as an ideal experimental model of triggered brain activity, our results suggest that reducing the initial magnetization effects by removing a few principal components from fMRI data may be potentially useful in the analysis of triggered event-related echo-planar time series. The implications of this study are discussed with special caution to remaining technical limitations and the additional neurophysiological issues of the triggered acquisition.