166 resultados para ESTRELAS
Resumo:
This study proposes an observing program focused on the investigation of the stellar magnetism and dynamo evolution in cool active solar-like stars. More mainly in the solar analogs and twins. Observations of stars of our base were carried out with two spectropolarimeter (ESPaDOnS@CFHT and NARVAL@TBL). The analyse of stars in stage different allows an understanding of the dependence of magnetic activity on basic stellar parameters such as rotation, mass, age and depth of the convection zone. This study provides measures necessary for testing dynamo theories. The 65 targets for this project are solar type stars with mass spanning from 0:9 M=Mfi 1:075 solar masses and at different evolutionary stages. Our two main science objectives were, (i) To determine how the magnetic field evolved from the ZAMS to the TO (turn off) for stars with 0:9 M=Mfi 1:075; (ii) To determine the impact of convective depth and rotation on magnetic of cool stars of solar type. The main result from this study was the characterization of the dependence of magnetic field intensity as function of age, Rossby number and the convective zone deepening. This context, the availability of ESPaDOnS and NARVAL opens an exceptional possibility to study the magnetic properties of Sun-like stars by means of spectropolarimetric observations
Resumo:
The Galaxy open clusters have a wide variety of physical properties that make them valuable laboratories for studies of stellar and chemical evolution of the Galaxy. In order to better settle these properties we investigate the abundances of a large number of chemical elements in a sample of 27 evolved stars of the open cluster M67 with different evolutionary stages (turn-off, subgiant and giant stars). For such a study we used high-resolution spectra (R 47 000) and high S/N obtained with UVES+FLAMES at VLT/UT2, covering the wavelength interval 4200-10 600 Å. Our spectral analysis is based on the MARCS models of atmosphere and Turbospectrum spectroscopic tool. The oxygen abundances were determined from the [O I] line at 6300 Å. In addition, we have also computed abundances of Si I, Na I, Mg I, Al I, Ca I, Ti I, Co I, Ni I, Zr I, La II and Cr I. The abundances investigated in this work, combined with their stellar parameters, offers an opportunity to determine the level of mixing and convective dilution of evolved stars in M67. Based on the obtained parameters, the abundances of these seem to follow a similar trend to the curve of solar abundances. Additionally, following strategies of other studies have investigated the relative abundances as a function of effective temperature and metallicity, where it was possible to observe an abundance of Na, Al and Si to the stars in the field of giants. A large dispersion from star to star, is observed in the ratios [X / Fe] for the Co, Zr and La, and the absence of Zr and La, in the stars of the turn-off. Comparisons made between our results and other studies in the literature show that values of abundances are in agreement and close to the limits of the errors
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Mira are pulsating variable stars in advanced stages of evolution. Their atmospheres are sources of intense absorption bands attributed to molecular titanium monoxide (TiO). It has been suggested that the abundance of TiO reaches its maximum value near the minimum light. In this sense, the study of the processes of formation and destruction of TiO in circumstellar envelopes of Mira stars, not only allows us to understand the physical and chemical processes that occur in these environments, as it allows to verify the correlation between the abundance of TiO and its light curve. However, the main mechanisms of formation and destruction of TiO are poorly known and, consequently, the possible correlation between the abundance of this species and the light curve. In these sense, we studied the main processes of formation and destruction of titanium monoxide in molecular layers of Mira atmospheres and determined its temporal variation as function of the stellar radius. The TiO profile along the radius was expected for the different stellar phase, however its abundance is not enough to explain the light curve. The reasons behind it are discussed in details