996 resultados para EROD ACTIVITY


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study compares basal and induced expression of cytochrome P4501A-CYP1A in the brain of gilthead seabream, Sparus aurata. Larval or adult seabream were exposed to benzo(a)pyrene -B(a)P- and the CYP1A response was assessed by analyzing CYP1A mRNA (RT-PCR), CYP1A protein (expression levels: ELISA, western blotting; cellular localization: immunohistochemistry), and CYP1A catalytic activity (7-ethoxyresorufin-O-deethylase-EROD). In the brain of adult S. aurata, CYP1A immunostaining was generally detected in the vasculature. It was present in the neuronal fibers and glial cells of the olfactory bulbs and the ventral telencephalon. ELISA and RT-PCR analyses confirmed CYP1A expression in the brains of non-exposed seabream. B(a)P exposure led to increased CYP1A staining mainly in neuronal fibers and glial cells of the olfactory bulbs, but also in the vascular endothelia. EROD activity, however, could not be detected in the brain of adult seabream, neither in control nor in exposed fish. In the developing brain of S. aurata larvae, immunohistochemical staining detected CYP1A protein exclusively in endothelia of the olfactory placode and in retina. Staining intensity of CYP1A slightly increases with larval development, especially in vascular brain endothelia. Exposing the larvae to 0.3 or 0.5 microg B(a)P/L from hatching until 15 days post hatching (dph) did not result in enhanced CYP1A immunostaining in the brain. In samples of whole seabream larvae, both from controls and BaP treatments, neither CYP1A mRNA, protein nor catalytic activity were detectable. The results demonstrate that CYP1A is expressed already and inducible in the larval brain, but that the regional and cellular expression differs partly between larval and adult brain. This may have implications for the toxicity of CYP1A-inducing xenobiotics on early and mature life stages of seabream.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polycyclic aromatic hydrocarbons (PAHs) are immunotoxicants in fish. In mammals, phase I metabolites are believed to be critically involved in the immunotoxicity of PAHs. This mechanism has been suggested for fish as well. The present study investigates the capacity of immune organs (head kidney, spleen) of rainbow trout, Oncorhynchus mykiss, to metabolize the prototypic PAH, benzo[a]pyrene (BaP). To this end, we analyzed 1) the induction of enzymatic capacity measured as 7-ethoxyresorufin-O-deethylase (EROD) activity in immune organs compared with liver, 2) the organ profiles of BaP metabolites generated in vivo, and 3) rates of microsomal BaP metabolite production in vitro. All measurements were done for control fish and for fish treated with an intraperitoneal injection of 15 mg BaP/kg body weight. In exposed trout, the liver, head kidney, and spleen contained similar levels of BaP, whereas EROD induction differed significantly between the organs, with liver showing the highest induction factor (132.8×), followed by head kidney (38.4×) and spleen (1.4×). Likewise, rates of microsomal metabolite formation experienced the highest induction in the liver of BaP-exposed trout, followed by the head kidney and spleen. Microsomes from control fish displayed tissue-specific differences in metabolite production. In contrast, in BaP-exposed trout, microsomes of all organs produced the potentially immunotoxic BaP-7,8-dihydrodiol as the main metabolite. The findings from this study show that PAHs, like BaP, are distributed into immune organs of fish and provide the first evidence that immune organs possess inducible PAH metabolism leading to in situ production of potentially immunotoxic PAH metabolites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seasonality of biomarker baseline levels were studied in polar cod (Boreogadus saida), caught in Kongsfjorden, Svalbard, in April, July, September and December, 2006-2007. Physiological parameters (condition factor, gonado- and hepato-somatic indexes, energy reserves, potential metabolic activity and antifreeze activity) in polar cod were used to interpret the seasonality of potential biomarkers. The highest levels of ethoxyresorufin-O-deethylase (EROD) activity occurred concomitantly with the highest potential metabolic activity in July due to e.g. intense feeding. During pre-spawning, EROD showed significant inhibition and gender differences. Hence, its potential use in environmental monitoring should imply gender differentiation at least during this period. Glutathione S-transferase and catalase activities were stable from April to September, but changed in December suggesting a link to low biological activity. Knowledge of the biomarker baseline levels and their seasonal trends in polar cod is essential for a trustworthy interpretation of forthcoming toxicity data and environmental monitoring in the Arctic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cytochrome P4501A1 (CYP1A1), an enzyme known to metabolize polycyclic aromatic hydrocarbons, is regulated by the aryl hydrocarbon receptor (AhR). The involvement of protein kinase C (PKC) in the regulation of AhR signal transduction pathway, has been widely studied but the role of specific PKC isoform(s) involved in this process it is not well clarified. To study which PKC isoform(s) is implicated in the regulation of CYP1A1, in the poorly tumorigenic MH1C1 rat hepatoma cells, we examined the effects of some PKC pharmacological inhibitors, Calphostin C (CAL), Staurosporine (STA) and H7, and of 12-0-tetradecanoyl phorbol 13-acetate (TPA), a PKC activator, on basal and 3- methylcholanthrene (MC)-induced CYP1A1 protein expression and mediated ethoxyresorufin O-deethylation (EROD) activity. In parallel, the activities of PKC-α, -βI, -δ and -ε isoforms, the most expressed in MH1C1 cells, were monitored. After pre-treatment with CAL, STA and H7, the MC-induced CYP1A1 protein and EROD activity were rapidly reduced with temporal profile similar to the profile of the activity of α and β1 PKC isoforms. Moreover, TPA pre-treatment induced a biphasic effect on EROD activity, and a decline of PKC -βI and -α, in first instance, and -δ and -ε activities later on. These findings clearly show that, in MH1C1 cells, PKC is involved in CYP1A1 regulation and that α and βI classic PKC isoforms play an active role in modulating this process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Climate change and anthropogenic pollution are of increasing concern in remote areas such as Antarctica. The evolutionary adaptation of Antarctic notothenioid fish to the cold and stable Southern Ocean led to a low plasticity of their physiological functions, what may limit their capacity to deal with altered temperature regimes and pollution in the Antarctic environment. Using a biochemical approach, we aimed to assess the hepatic biotransformation capacities of Antarctic fish species by determining (i) the activities of ethoxyresorufin-O-deethylase (EROD) and glutathione-S-transferase (GST), and (ii) the metabolic clearance of benzo(a)pyrene by hepatic S9 supernatants. In addition, we determined the thermal sensitivity of the xenobiotic biotransformation enzymes. We investigated the xenobiotic metabolism of the red-blooded Gobionotothen gibberifrons and Notothenia rossii, the hemoglobin-less Chaenocephalus aceratus and Champsocephalus gunnari, and the rainbow trout Oncorhynchus mykiss as a reference. Our results revealed similar metabolic enzyme activities and metabolic clearance rates between red- and white-blooded Antarctic fish, but significantly lower rates in comparison to rainbow trout. Therefore, bioaccumulation factors for metabolizable lipophilic contaminants may be higher in Antarctic than in temperate fish. Likewise, the thermal adaptive capacities and flexibilities of the EROD and GST activities in Antarctic fish were significantly lower than in rainbow trout. As a consequence, increasing water temperatures in the Southern Ocean will additionally compromise the already low detoxification capacities of Antarctic fish.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study was designed to determine the potential anticarcinogenic activity of naturally occurring coumarins and their mechanism of action. The results indicated that several naturally occurring coumarins including bergamottin, coriandrin, imperatorin, isopimpinellin, and ostruthin, to which humans are routinely exposed in the diet, were effective inhibitors and/or inactivators of CYP1A1-mediated ethoxyresorufin-O-dealkylase (EROD) or CYP2B1-mediated pentoxyresorufin-O-dealkylase (PROD) in mouse liver microsomes. In addition, bergamottin and corandrin were also found to be inhibitors of purified human P450 1A1 in vitro. Further studies with coriandrin revealed that this compound was a mechanism-based inactivator of P450 1A1 and covalently bound to the P450 1A1 apoprotein. In cultured mouse keratinocytes, bergamottin and coriandrin effectively inhibited the B(a) P metabolism and significantly decreased covalent binding of B(a) P and DMBA to keratinocyte DNA and anti-diol-epoxide-DNA adducts derived from both B(a) P and DMBA in keratinocytes. The data from in vivo experiments showed that bergamottin and coriandrin were potent inhibitors of covalent binding of B (a) P to epidermal DNA and the formation of (+) anti BPDE-DNA adduct, whereas imperatorin and isopimpinellin were more potent inhibitors of covalent binding of DMBA to epidermal DNA. The ability of coumarins to inhibit covalent binding of B (a) P to DNA in mouse epidermis was positively correlated with their inhibitory effect P450 1A1 in vitro, while the inhibitory effect of coumarins on covalent binding of DMBA to epidermal DNA was positively correlated with their inhibitory effects on P450 2B1 and negatively to their inhibitory activity toward P450 1A1. The data from tumor experiments indicated that bergamottin, ostruthin, and coriandrin inhibited tumor initiation by B (a) P in a two-stage carcinogenesis protocol. Bergamottin was most effective in this regard and produced a dose dependent inhibition of papilloma formation in these experiments. In addition, imperatorin was an effective inhibitor of skin tumorigenesis induced by DMBA in SENCAR mouse skin using both a two-stage and a complete carcinogenesis protocol. At dose levels higher than those effective against DMBA, imperatorin also inhibited tumor initiation by B (a) P. The results to date demonstrate that several naturally occurring coumarins possess the ability to block tumor initiation and tumorigenesis by PAHs such as B (a) P and DMBA through inhibition of the P450s involved in the metabolic activation of these hydrocarbons. A working model for the involvement of specific P450s in the metabolic activation of these two PAHs was proposed. ^