946 resultados para ENDOTOXIN-INDUCED INFLAMMATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a growing interest in “medical gasses” for their antibacterial and anti-inflammatory properties. Hydrogen sulfide (H2S), a member of the family of gasotransmitters, is in fact increasingly being recognized as an important signaling molecule, but its precise role in the regulation of the inflammatory response is still not clear. For this reason, the aim of the first part of this thesis was to investigate the effects of H2S on the expression of pro-inflammatory cytokines, such as MCP-1, by using an in vitro model composed by both primary monocytes-derived macrophages cultures and the human monocytic cell line U937 infected with Mycoplasma fermentans, a well-known pro-inflammatory agent. In our experiments, we observed a marked increase in the production of pro-inflammatory cytokines in infected cells. In particular, MCP-1 was induced both at the RNA and at the protein level. To test the effects of H2S on infected cells, we treated the cells with two different H2S donors (NaHS and GYY4137), showing that both H2S treatments had anti-inflammatory effects in Mycoplasma-infected cells: the levels of MCP-1, both mRNA expression and protein production, were reduced. Our subsequent studies aimed at understanding the molecular mechanisms responsible for these effects, focused on two specific molecular pathways, both involved in inflammation: the NF-κB and the Nrf2 pathway. After treatment with pharmacological inhibitors, we demonstrated that Mycoplasma fermentans induces MCP-1 expression through the TLR-NF-κB pathway with the nuclear translocation of its subunits, while treatment with H2S completely blocked the nuclear translocation of NF-κB heterodimer p65/p50. Then, once infected cells were treated with H2S donors, we observed an increased protective effect of Nrf2 and also a decrease in ROS production. These results highlight the importance of H2S in reducing the inflammatory process caused by Mycoplasma fermentans. To this regard, it should be noted that several projects are currently ongoing to develop H2S-releasing compounds as candidate drugs capable of alleviating cell deterioration and to reduce the rate of decline in organ function. In the second part of this study, we investigated the role of Mycoplasma infection in cellular transformation. Infectious agents are involved in the etiology of many different cancers and a number of studies are still investigating the role of microbiota in tumor development. Mycoplasma has been associated with some human cancers, such as prostate cancer and non-Hodgkin’s lymphoma in HIV-seropositive people, and its potential causative role and molecular mechanisms involved are being actively investigated. To this regard, in vitro studies demonstrated that, upon infection, Mycoplasma suppresses the transcriptional activity of p53, key protein in the cancer suppression. As a consequence, infected cells were less susceptible to apoptosis and proliferated more than the uninfected cells. The mechanism(s) responsible for the Mycoplasma-induced inhibitory effect on p53 were not determined. Aim of the second part of this thesis was to better understand the tumorigenic role of the microorganism, by investigating more in details the effect(s) of Mycoplasma on p53 activity in an adenocarcinoma HCT116 cell line. Treatment of Mycoplasma-infected cells with 5FU or with Nutlin, two molecules that induce p53 activity, resulted in cellular proliferation comparable to untreated controls. These results suggested that Mycoplasma infection inhibited p53 activity. Immunoprecipitation of p53 with specific antibodies, and subsequent Gas Chromatography and Mass Spectroscopy (GC-MS) assays, allowed us to identify several Mycoplasma-specific proteins interacting with p53, such as DnaK, a prokaryotic heat shock protein and stress inducible chaperones. In cells transfected with DnaK we observed i) reduced p53 protein levels; ii) reduced activity and expression of p21, Bax and PUMA, iii) a marked increase in cells leaving G1 phase. Taken together, these data show an interaction between the human p53 and the Mycoplasma protein DnaK, with the consequent decreased p53 activity and decreased capability to respond to DNA damage and prevent cell proliferation. Our data indicate that Mycoplasma could be involved in cancer formation and the mechanism(s) has the potential to be a target for cancer diagnosis and treatment(s).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Focal and segmental glomerulosclerosis (FSGS) is one of the most important causes of end-stage renal failure. The bradykinin B1 receptor has been associated with tissue inflammation and renal fibrosis. To test for a role of the bradykinin B1 receptor in podocyte injury, we pharmacologically modulated its activity at different time points in an adriamycin-induced mouse model of FSGS. Estimated albuminuria and urinary protein to creatinine ratios correlated with podocytopathy. Adriamycin injection led to loss of body weight, proteinuria, and upregulation of B1 receptor mRNA. Early treatment with a B1 antagonist reduced albuminuria and glomerulosclerosis, and inhibited the adriamycin-induced downregulation of podocin, nephrin, and alpha-actinin-4 expression. Moreover, delayed treatment with antagonist also induced podocyte protection. Conversely, a B1 agonist aggravated renal dysfunction and even further suppressed the levels of podocyte-related molecules. Thus, we propose that kinin has a crucial role in the pathogenesis of FSGS operating through bradykinin B1 receptor signaling. Kidney International (2011) 79, 1217-1227; doi:10.1038/ki.2011.14; published online 16 March 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endotoxin triggers the subarachnoid inflammation of gram-negative meningitis. This study examined the ability of a recombinant N-terminal fragment of bactericidal/permeability-increasing protein (rBPI23) to block endotoxin-induced meningitis in rabbits. Intracisternal (ic) injection of 10-20 ng of meningococcal endotoxin induced high cerebrospinal fluid (CSF) concentrations of tumor necrosis factor (TNF) and CSF pleocytosis and increased CSF lactate concentrations. ic administration of rBPI23 significantly reduced meningococcal endotoxin-induced TNF release into CSF (P < .005), lactate concentrations (P < .001), and CSF white blood cell counts (P < .01). No such effect was observed in animals receiving intravenous rBPI23. Concentrations of rBPI23 in CSF were high after ic administration but low or undetectable after systemic administration. Thus, high concentrations of rBPI23 can effectively neutralize meningococcal endotoxin in CSF, but low CSF concentrations after systemic administration currently limit its potential usefulness as adjunctive drug treatment in gram-negative meningitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asbestos exposure can result in serious and frequently lethal diseases, including malignant mesothelioma. The host sensor for asbestos-induced inflammation is the NLRP3 inflammasome and it is widely assumed that this complex is essential for asbestos-induced cancers. Here, we report that acute interleukin-1β production and recruitment of immune cells into peritoneal cavity were significantly decreased in the NLRP3-deficient mice after the administration of asbestos. However, NLRP3-deficient mice displayed a similar incidence of malignant mesothelioma and survival times as wild-type mice. Thus, early inflammatory reactions triggered by asbestos are NLRP3-dependent, but NLRP3 is not critical in the chronic development of asbestos-induced mesothelioma. Notably, in a two-stage carcinogenesis-induced papilloma model, NLRP3-deficient mice showed a resistance phenotype in two different strain backgrounds, suggesting a tumour-promoting role of NLRP3 in certain chemically-induced cancer types.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetic patients have increased susceptibility to infection, which may be related to impaired inflammatory response observed in experimental models of diabetes, and restored by insulin treatment. The goal of this study was to investigate whether insulin regulates transcription of cytokines and intercellular adhesion molecule 1 (ICAM-1) via nuclear factor-kappa B (NF-kappa B) signaling pathway in Escherichia coli LIPS-induced lung inflammation. Diabetic male Wistar rats (alloxan, 42 mg/kg, iv., 10 days) and controls were instilled intratracheally with saline containing LPS (750 mu g/0.4 mL) or saline only. Some diabetic rats were given neutral protamine Hagedorn insulin (4 IU, s.c.) 2 h before LIPS. Analyses performed 6 h after LPS included: (a) lung and mesenteric lymph node IL-1 beta, TNF-alpha, IL-10, and ICAM-1 messenger RNA (mRNA) were quantified by real-time reverse transcriptase-polymerase chain reaction; (b) number of neutrophils in the bronchoalveolar lavage (BAL) fluid, and concentrations of IL-1 beta, TNF-alpha, and IL-10 in the BAL were determined by the enzyme-linked immunosorbent assay; and (c) activation of NF-kappa B p65 subunit and phosphorylation of I-kappa B alpha were quantified by Western blot analysis. Relative to controls, diabetic rats exhibited a reduction in lung and mesenteric lymph node IL-1 beta (40%), TNF-alpha (similar to 30%), and IL-10 (similar to 40%) mRNA levels and reduced concentrations of IL-1 beta (52%), TNF-alpha (62%), IL-10 (43%), and neutrophil counts (72%) in the BAL. Activation of NF-kappa B p65 subunit and phosphorylation of I-kappa B alpha were almost suppressed in diabetic rats. Treatment of diabetic rats with insulin completely restored mRNA and protein levels of these cytokines and potentiated lung ICAM-1 mRNA levels (30%) and number of neutrophils (72%) in the BAL. Activation of NF-kappa B p65 subunit and phosphorylation of I-kappa B alpha were partially restored by insulin treatment. In conclusion, data presented suggest that insulin regulates transcription of proinflammatory (IL-1 beta, TNF-alpha) and anti-inflammatory (IL-10) cytokines, and expression of ICAM-1 via the NF-kappa B signaling pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipopolysaccharides from gram-negative bacteria are amongst the most common causative agents of acute lung injury, which is characterized by an inflammatory response, with cellular infiltration and the release of mediators/cytokines. There is evidence that bradykinin plays a role in lung inflammation in asthma but in other types of lung inflammation its role is less clear. In the present study we evaluated the role of the bradykinin B(1) receptor in acute lung injury caused by lipopolysaccharide inhalation and the mechanisms behind bradykinin actions participating in the inflammatory response. We found that in C57BI/6 mice, the bradykinin B(1) receptor expression was up-regulated 24 h after lipopolysaccharide inhalation. At this time, the number of cells and protein concentration were significantly increased in the bronchoalveolar lavage fluid and the mice developed airway hyperreactivity to methacholine. In addition, there was an increased expression of tumor necrosis factor-alpha, interleukin-1 beta and interferon-gamma and chemokines (monocytes chemotactic protein-1 and KC) in the bronchoalveolar lavage fluid and in the lung tissue. We then treated the mice with a bradykinin B, receptor antagonist, R-954 (Ac-Orn-[Oic(2), alpha-MePhe(5), D-beta Nal(7), Ile(8)]desArg(9)-bradykinin), 30 min after lipopolysaccharide administration. We observed that this treatment prevented the airway hyperreactivity as well as the increased cellular infiltration and protein content in the bronchoalveolar lavage fluid. Moreover, R-954 inhibited the expression of cytokines/chemokines. These results implicate bradykinin, acting through B(1) receptor, in the development of acute lung injury caused by lipopolysaccharide inhalation. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Annexin A1 (AnxA1) is a protein that displays potent anti-inflammatory properties, but its expression in eye tissue and its role in ocular inflammatory diseases have not been well studied. We investigated the mechanism of action and potential uses of AnxA1 and its mimetic peptide (Ac2-26) in the endotoxin-induced uveitis (EIU) rodent model and in human ARPE-19 cells activated by LPS. In rats, analysis of untreated EIU after 24 and 48 h or EIU treated with topical applications or with a single s.c. injection of Ac2-26 revealed the anti-inflammatory actions of Ac2-26 on leukocyte infiltration and on the release of inflammatory mediators; the systemic administration of Boc2, a formylated peptide receptor (fpr) antagonist, abrogated the peptide's protective effects. Moreover, AnxA1-/- mice exhibited exacerbated EIU compared with wild-type animals. Immunohistochemical studies of ocular tissue showed a specific AnxA1 posttranslational modification in EIU and indicated that the fpr2 receptor mediated the anti-inflammatory actions of AnxA1. In vitro studies confirmed the roles of AnxA1 and fpr2 and the protective effects of Ac2-26 on the release of chemical mediators in ARPE-19 cells. Molecular analysis of NF-κB translocation and IL-6, IL-8, and cyclooxygenase-2 gene expression indicated that the protective effects of AnxA1 occur independently of the NF-κB signaling pathway and possibly in a posttranscriptional manner. Together, our data highlight the role of AnxA1 in ocular inflammation, especially uveitis, and suggest the use of AnxA1 or its mimetic peptide Ac2-26 as a therapeutic approach. Copyright © 2013 by The American Association of Immunologists, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the perinatal period the developing brain is most vulnerable to inflammation. Prenatal infection or exposure to inflammatory factors can have a profound impact on fetal neurodevelopment with long-term neurological deficits, such as cognitive impairment, learning deficits, perinatal brain damage and cerebral palsy. Inflammation in the brain is characterized by activation of resident immune cells, especially microglia and astrocytes whose activation is associated with a variety of neurodegenerative disorders like Alzheimer´s disease and Multiple sclerosis. These cell types express, release and respond to pro-inflammatory mediators such as cytokines, which are critically involved in the immune response to infection. It has been demonstrated recently that cytokines also directly influence neuronal function. Glial cells are capable of releaseing the pro-inflammatory cytokines MIP-2, which is involved in cell death, and tumor necrosis factor alpha (TNFalpha), which enhances excitatory synaptic function by increasing the surface expression of AMPA receptors. Thus constitutively released TNFalpha homeostatically regulates the balance between neuronal excitation and inhibition in an activity-dependent manner. Since TNFalpha is also involved in neuronal cell death, the interplay between neuronal activity MIP-2 and TNFalpha may control the process of cell death and cell survival in developing neuronal networks. An increasing body of evidence suggests that neuronal activity is important in the regulation of neuronal survival during early development, e.g. programmed cell death (apoptosis) is augmented when neuronal activity is blocked. In our study we were interested on the impact of inflammation on neuronal activity and cell survival during early cortical development. To address this question, we investigated the impact of inflammation on neuronal activity and cell survival during early cortical development in vivo and in vitro. Inflammation was experimentally induced by application of the endotoxin lipopolysaccharide (LPS), which initiates a rapid and well-characterized immune response. I studied the consequences of inflammation on spontaneous neuronal network activity and cell death by combining electrophysiological recordings with multi-electrode arrays and quantitative analyses of apoptosis. In addition, I used a cytokine array and antibodies directed against specific cytokines allowing the identification of the pro-inflammatory factors, which are critically involved in these processes. In this study I demonstrated a direct link between inflammation-induced modifications in neuronal network activity and the control of cell survival in a developing neuronal network for the first time. Our in vivo and in vitro recordings showed a fast LPS-induced reduction in occurrence of spontaneous oscillatory activity. It is indicated that LPS-induced inflammation causes fast release of proinflammatory factors which modify neuronal network activity. My experiments with specific antibodies demonstrate that TNFalpha and to a lesser extent MIP-2 seem to be the key mediators causing activity-dependent neuronal cell death in developing brain. These data may be of important clinical relevance, since spontaneous synchronized activity is also a hallmark of the developing human brain and inflammation-induced alterations in this early network activity may have a critical impact on the survival of immature neurons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During sepsis, activation of phagocytes leads to the overproduction of proinflammatory cytokines, causing systemic inflammation. Despite substantial information regarding the underlying molecular mechanisms that lead to sepsis, several elements in the pathway remain to be elucidated. We found that the enzyme sphingosine kinase 1 (SphK1) is up-regulated in stimulated human phagocytes and in peritoneal phagocytes of patients with severe sepsis. Blockade of SphK1 inhibited phagocyte production of endotoxin-induced proinflammatory cytokines. We observed protection against sepsis in mice treated with a specific SphK1 inhibitor that was enhanced by treatment with a broad-spectrum antibiotic. These results demonstrated a critical role for SphK1 in endotoxin signaling and sepsis-induced inflammatory responses and suggest that inhibition of SphK1 is a potential therapy for septic shock.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of platelets in hemostasis is to produce a plug to arrest bleeding. During thrombocytopenia, spontaneous bleeding is seen in some patients but not in others; the reason for this is unknown. Here, we subjected thrombocytopenic mice to models of dermatitis, stroke, and lung inflammation. The mice showed massive hemorrhage that was limited to the area of inflammation and was not observed in uninflamed thrombocytopenic mice. Endotoxin-induced lung inflammation during thrombocytopenia triggered substantial intra-alveolar hemorrhage leading to profound anemia and respiratory distress. By imaging the cutaneous Arthus reaction through a skin window, we observed in real time the loss of vascular integrity and the kinetics of skin hemorrhage in thrombocytopenic mice. Bleeding-observed mostly from venules-occurred as early as 20 minutes after challenge, pointing to a continuous need for platelets to maintain vascular integrity in inflamed microcirculation. Inflammatory hemorrhage was not seen in genetically engineered mice lacking major platelet adhesion receptors or their activators (alphaIIbbeta3, glycoprotein Ibalpha [GPIbalpha], GPVI, and calcium and diacylglycerol-regulated guanine nucleotide exchange factor I [CalDAG-GEFI]), thus indicating that firm platelet adhesion was not necessary for their supporting role. While platelets were previously shown to promote endothelial activation and recruitment of inflammatory cells, they also appear indispensable to maintain vascular integrity in inflamed tissue. Based on our observations, we propose that inflammation may cause life-threatening hemorrhage during thrombocytopenia.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Increased concentrations of biomarkers reflecting myocardial stress such as cardiac troponin I and T and brain natriuretic peptide (BNP) have been observed following strenuous, long-lasting endurance exercise. The pathophysiological mechanisms are still not fully elucidated and the interpretations of increased post-exercise concentrations range from (i) evidence for exercise-induced myocardial damage to (ii) non-relevant spurious troponin elevations, presumably caused by assay imprecision or heterophilic antibodies. Several lines of evidence suggest that inflammatory processes or oxidative stress could be involved in the rise of NT-proBNP and Troponin observed in critically ill patients with sepsis or burn injury. We tested the hypothesis that inflammatory or oxidative stress is also responsible for exercise-induced cardiomyocyte strain in a large cohort of triathletes following an Ironman triathlon. However, the post-race increase in cardiac troponin T and NT-proBNP was not associated with several markers of exercise-induced inflammation, oxidative stress or antioxidant vitamins. Therefore, we clearly need more studies with other inflammatory markers and different designs to elucidate the scientific background for increases in myocardial stress markers following strenuous endurance events.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nosso objetivo foi determinar que tipo de estatina pode atenuar a lesão pulmonar aguda (LPA) induzida por lipopolissacarídeo (LPS) em camundongos da linhagem C57Bl/6. Trinta camundongos machos ( 23 g) foram divididos em 5 grupos (n=6 cada): grupo LPS (10 mg/kg) administrado intraperitonealmente (i.p.), LPS mais atorvastatina (10 mg/kg/dia; grupo LPS+A), LPS mais pravastatina (5 mg/kg/dia; grupo LPS+P) e LPS mais sinvastatina (20 mg/kg/dia; grupo LPS+S). O grupo controle recebeu salina i.p.. Em um grupo separado de camundongos (n=5), a soma das pressões pulmonares resistivas e viscoelásticas (DeltaPtot) e elastância estática (E[st]) foram medidas. Um dia após a administração de LPS os camundongos foram sacrificados (24 h) por deslocamento cervical e logo em seguida foi realizado lavado broncoalveolar (LBA). Os pulmões foram removidos para análise histopatológica e homogeneizados para análises bioquímicas (ELISA, catalase, superóxido dismutase, mieloperoxidase, substâncias reativas ao ácido tiobarbitúrico, carbonilação de proteínas e método de Griess). A quantidade de leucócitos foi menor no grupo LPS+P (p<0,01) e LPS+S (p<0,05) em comparação ao grupo LPS. Os níveis de MCP-1 e IL-6 reduziram no grupo LPS+P (p<0,01), enquanto o grupo LPS + S mostrou redução apenas nos níveis de IL-6 (p<0,05) em comparação ao grupo LPS. Marcadores redox (superóxido dismutase e catalase) foram menores no grupo LPS+A (p<0,01) em comparação ao grupo LPS. A peroxidação lipídica (malondialdeído e hidroperóxidos) diminuiu em todos os grupos tratados (p<0,05) quando comparados ao grupo LPS. A mieloperoxidase foi menor no grupo LPS+P (p<0,01) quando comparado ao grupo LPS. DeltaPtot e E(st) foram, significativamente, maiores no grupo LPS do que nos outros grupos. Nossos resultados sugerem que atorvastatina e pravastatina, mas não a sinvastatina, exibiram ações anti-inflamatórias e antioxidantes na LPA induzida por LPS.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Respiratory syncytial viral (RSV) infections are a frequent cause of chronic obstructive pulmonary disease (COPD) exacerbations, which are a major factor in disease progression and mortality. RSV is able to evade antiviral defenses to persist in the lungs of COPD patients. Though RSV infection has been identified in COPD, its contribution to cigarette smoke-induced airway inflammation and lung tissue destruction has not been established. Here we examine the long-term effects of cigarette smoke exposure, in combination with monthly RSV infections, on pulmonary inflammation, protease production and remodeling in mice. RSV exposures enhanced the influx of macrophages, neutrophils and lymphocytes to the airways of cigarette smoke exposed C57BL/6J mice. This infiltration of cells was most pronounced around the vasculature and bronchial airways. By itself, RSV caused significant airspace enlargement and fibrosis in mice and these effects were accentuated with concomitant smoke exposure. Combined stimulation with both smoke and RSV synergistically induced cytokine (IL-1a, IL-17, IFN-c, KC, IL-13, CXCL9, RANTES, MIF and GM-CSF) and protease (MMP-2, -8, -12, -13, -16 and cathepsins E, S, W and Z) expression. In addition, RSV exposure caused marked apoptosis within the airways of infected mice, which was augmented by cigarette smoke exposure. RSV and smoke exposure also reduced protein phosphatase 2A (PP2A) and protein tyrosine phosphates (PTP1B) expression and activity. This is significant as these phosphatases counter smoke-induced inflammation and protease expression. Together, these findings show for the first time that recurrent RSV infection markedly enhances inflammation, apoptosis and tissue destruction in smoke-exposed mice. Indeed, these results indicate that preventing RSV transmission and infection has the potential to significantly impact on COPD severity and progression.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

STUDY DESIGN: Randomized crossover double-blinded placebo-controlled trial. OBJECTIVE: To investigate if low-level laser therapy (LLLT) can affect biceps muscle performance, fatigue development, and biochemical markers of postexercise recovery. BACKGROUND: Cell and animal studies have suggested that LLLT can reduce oxidative stress and inflammatory responses in muscle tissue. But it remains uncertain whether these findings can translate into humans in sport and exercise situations. METHODS: Nine healthy male volleyball players participated in the study. They received either active LLLT (cluster probe with 5 laser diodes; A = 810 nm; 200 mW power output; 30 seconds of irradiation, applied in 2 locations over the biceps of the nondominant arm; 60 J of total energy) or placebo LLLT using an identical cluster probe. The intervention or placebo were applied 3 minutes before the performance of exercise. All subjects performed voluntary elbow flexion repetitions with a workload of 75% of their maximal voluntary contraction force until exhaustion. RESULTS: Active LLLT increased the number of repetitions by 14.5% (mean +/- SD, 39.6 +/- 4.3 versus 34.6 +/- 5.6; P = .037) and the elapsed time before exhaustion by 8.0% (P = .034), when compared to the placebo treatment. The biochemical markers also indicated that recovery may be positively affected by LLLT, as indicated by postexercise blood lactate levels (P<.01), creatine kinase activity (P = .017), and C-reactive protein levels (P = .047), showing a faster recovery with LLLT application prior to the exercise. CONCLUSION: We conclude that pre-exercise irradiation of the biceps with an LLLT dose of 6 J per application location, applied in 2 locations, increased endurance for repeated elbow flexion against resistance and decreased postexercise levels of blood lactate, creatine kinase, and C-reactive protein. LEVEL OF EVIDENCE: Performance enhancement, level 1b. J Orthop Sports Phys Ther 2010;40(8):524-532. doi:10.2519/jospt.2010.3294