891 resultados para ENDOTHELIAL-CELL ADHESION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background/Objective: Renal ischemia-hypoxia is a leading cause of acute kidney injury (AKI). Ischemia causes extracellular matrix breakdown of the tubular basement membrane. Endostatin (ES) is the C-terminal fragment of collagen XVIII generated by proteolytic cleavage. Recent studies have demonstrated that ES expression is upregulated in ischemic kidneys. The present study aimed to characterize ES from ischemic kidneys. Methods: Ischemic renal failure was induced via 45 min of occlusion of the left renal artery and vein. After the ischemic period, blood was collected. Kidneys were harvested and used for immunohistochemical testing and protein extraction. Three-step purification was used. Soluble and immobilized purified ES were tested in cell viability and adhesion assays. Results: The soluble KES28kDa inhibited endothelial cell proliferation: 25 versus 12.5 mu g (p < 0.05); 12.5 versus 3.15 mu g (p < 0.05). Immobilization of KES28kDa supports endothelial cell survival over the control p = 0.021). Human umbilical vein endothelial cells plated on immobilized KES28kDa showed an increase in membrane ruffles and stress fibers. Conclusion: These data demonstrate the local synthesis of a 28-kDa ES-related fragment following AKI and suggest its role in endothelium survival. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: Inflammation may have an important role in the beginning and in the progress of cardiovascular diseases. Testosterone exerts important effects on vascular function, which is altered in arterial hypertension. Thus, the aim of this study was to evaluate the influence of endogenous testosterone on leukocyte behavior in post-capillary venules of the mesenteric bed of spontaneously hypertensive rats (SHR). Main methods: 18 week-old intact SHR, castrated SHR and normotensive rats (intact Wistar) were used. Blood pressure was measured by tail plethysmography and serum testosterone levels by ELISA. Leukocyte rolling, adhesion and migration were evaluated in vivo in situ by intravital microscopy. Key findings: Castration significantly reduced blood pressure and reversed the increased leukocyte rolling and adhesion observed in SHRs. Leukocyte counts and other hemodynamic parameters did not differ among groups. SHRs displayed increased protein expression of P-selectin and ICAM-1 in mesenteric venules when compared to intact Wistar. Castration of SHRs restored the protein expression of the cell adhesion molecules. Significance: The findings of the present study demonstrate the critical role of endogenous testosterone mediating the effects of hypertension increasing leukocyte-endothelial cell interaction. Increased expression of cell adhesion molecules contribute to the effects of endogenous testosterone promoting increased leukocyte rolling and adhesion in SHRs. (c) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leucocyte migration into the central nervous system is a key stage in the development of multiple sclerosis. While much has been learnt regarding the sequential steps of leucocyte capture, adhesion and migration across the vasculature, the molecular basis of leucocyte extravasation is only just being unravelled. It is now recognized that bidirectional crosstalk between the immune cell and endothelium is an essential element in mediating diapedesis during both normal immune surveillance and under inflammatory conditions. The induction of various signalling networks, through engagement of cell surface molecules such as integrins on the leucocyte and immunoglobulin superfamily cell adhesion molecules on the endothelial cell, play a major role in determining the pattern and route of leucocyte emigration. In this review we discuss the extent of our knowledge regarding leucocyte migration across the blood-brain barrier and in particular the endothelial cell signalling pathways contributing to this process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Utilizing both the TET-OFF and TET-ON systems in combination with transcriptional control elements of the Tie-2 gene, we have established a series of transgenic activator and responder mice for TET-regulated endothelial cell-specific transgene expression in double transgenic mouse embryos and in adult mice. TET-regulated expression of LacZ reporter genes could be achieved in virtually all endothelia in mid gestation stage mouse embryos. In contrast in adult mice, using the very same Tie-2 tTA activator mouse strain, we observed striking differences of TET-induced gene expression from various inducible expression constructs in different vascular beds. Non-endothelial expression was never detected. The prominent differences in completeness of TET-induced endothelial expression highlight the still underestimated critical role of the responder mouse lines for uniform TET-induced gene expression in heterogeneous cell populations such as endothelial cells. Interestingly, in double transgenic mice inducibly expressing several different adhesion molecules, no adverse effects were observed even though these proteins were robustly expressed on endothelial cells in adult tissues. These transgenic model systems provide versatile tools for the TET-regulated manipulation of endothelial cell-specific gene expression in the entire embryonic vasculature and distinct vascular beds in adult mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The receptor tyrosine kinase Tie2, and its activating ligand Angiopoietin-1 (Ang1), are required for vascular remodelling and vessel integrity, whereas Ang2 may counteract these functions. However, it is not known how Tie2 transduces these different signals. Here, we show that Ang1 induces unique Tie2 complexes in mobile and confluent endothelial cells. Matrix-bound Ang1 induced cell adhesion, motility and Tie2 activation in cell-matrix contacts that became translocated to the trailing edge in migrating endothelial cells. In contrast, in contacting cells Ang1 induced Tie2 translocation to cell-cell contacts and the formation of homotypic Tie2-Tie2 trans-associated complexes that included the vascular endothelial phosphotyrosine phosphatase, leading to inhibition of paracellular permeability. Distinct signalling proteins were preferentially activated by Tie2 in the cell-matrix and cell-cell contacts, where Ang2 inhibited Ang1-induced Tie2 activation. This novel type of cellular microenvironment-dependent receptor tyrosine kinase activation may explain some of the effects of angiopoietins in angiogenesis and vessel stabilization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RP1 (synonym: MAPRE2, EB2) is a member of the microtubule binding EB1 protein family, which interacts with APC, a key regulatory molecule in the Wnt signalling pathway. While the other EB1 proteins are well characterized the cellular function and regulation of RP1 remain speculative to date. However, recently RP1 has been implicated in pancreatic cancerogenesis. CK2 is a pleiotropic kinase involved in adhesion, proliferation and anti-apoptosis. Overexpression of protein kinase CK2 is a hallmark of many cancers and supports the malignant phenotype of tumor cells. In this study we investigate the interaction of protein kinase CK2 with RP1 and demonstrate that CK2 phosphorylates RP1 at Ser(236) in vitro. Stable RP1 expression in cell lines leads to a significant cleavage and down-regulation of N-cadherin and impaired adhesion. Cells expressing a Phospho-mimicking point mutant RP1-ASP(236) show a marked decrease of adhesion to endothelial cells under shear stress. Inversely, we found that the cells under shear stress downregulate endogenous RP1, most likely to improve cellular adhesion. Accordingly, when RP1 expression is suppressed by shRNA, cells lacking RP1 display significantly increased cell adherence to surfaces. In summary, RP1 phosphorylation at Ser(236) by CK2 seems to play a significant role in cell adhesion and might initiate new insights in the CK2 and EB1 family protein association.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TNF-α (tumor necrosis factor-α) is a potent pro-inflammatory cytokine that regulates the permeability of blood and lymphatic vessels. The plasma concentration of TNF-α is elevated (> 1 pg/mL) in several pathologies, including rheumatoid arthritis, atherosclerosis, cancer, pre-eclampsia; in obese individuals; and in trauma patients. To test whether circulating TNF-α could induce similar alterations in different districts along the vascular system, three endothelial cell lines, namely HUVEC, HPMEC, and HCAEC, were characterized in terms of 1) mechanical properties, employing atomic force microscopy; 2) cytoskeletal organization, through fluorescence microscopy; and 3) membrane overexpression of adhesion molecules, employing ELISA and immunostaining. Upon stimulation with TNF-α (10 ng/mL for 20 h), for all three endothelial cells, the mechanical stiffness increased by about 50% with a mean apparent elastic modulus of E ~5 ± 0.5 kPa (~3.3 ± 0.35 kPa for the control cells); the density of F-actin filaments increased in the apical and median planes; and the ICAM-1 receptors were overexpressed compared with controls. Collectively, these results demonstrate that sufficiently high levels of circulating TNF-α have similar effects on different endothelial districts, and provide additional information for unraveling the possible correlations between circulating pro-inflammatory cytokines and systemic vascular dysfunction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of lymph nodes (LNs) and formation of LN stromal cell microenvironments is dependent on lymphotoxin-β receptor (LTβR) signaling. In particular, the LTβR-dependent crosstalk between mesenchymal lymphoid tissue organizer and hematopoietic lymphoid tissue inducer cells has been regarded as critical for these processes. Here, we assessed whether endothelial cell (EC)-restricted LTβR signaling impacts on LN development and the vascular LN microenvironment. Using EC-specific ablation of LTβR in mice, we found that conditionally LTβR-deficient animals failed to develop a significant proportion of their peripheral LNs. However, remnant LNs showed impaired formation of high endothelial venules (HEVs). Venules had lost their cuboidal shape, showed reduced segment length and branching points, and reduced adhesion molecule and constitutive chemokine expression. Due to the altered EC-lymphocyte interaction, homing of lymphocytes to peripheral LNs was significantly impaired. Thus, this study identifies ECs as an important LTβR-dependent lymphoid tissue organizer cell population and indicates that continuous triggering of the LTβR on LN ECs is critical for lymphocyte homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the potential role of tenascin-C (TN-C) on endothelial sprouting we used bovine aortic endothelial cells (BAECs) as an in vitro model of angiogenesis. We found that TN-C is specifically expressed by sprouting and cord-forming BAECs but not by nonsprouting BAECs. To test whether TN-C alone or in combination with basic fibroblast growth factor (bFGF) can enhance endothelial sprouting or cord formation, we used BAECs that normally do not sprout and, fittingly, do not express TN-C. In the presence of bFGF, exogenous TN-C but not fibronectin induced an elongated phenotype in nonsprouting BAECs. This phenotype was due to altered actin cytoskeleton organization. The fibrinogen globe of the TN-C molecule was the active domain promoting the elongated phenotype in response to bFGF. Furthermore, we found that the fibrinogen globe was responsible for reduced cell adhesion of BAECs on TN-C substrates. We conclude that bFGF-stimulated endothelial cells can be switched to a sprouting phenotype by the decreased adhesive strength of TN-C, mediated by the fibrinogen globe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sequence of events that leads to tumor vessel regression and the functional characteristics of these vessels during hormone–ablation therapy are not known. This is because of the lack of an appropriate animal model and monitoring technology. By using in vivo microscopy and in situ molecular analysis of the androgen-dependent Shionogi carcinoma grown in severe combined immunodeficient mice, we show that castration of these mice leads to tumor regression and a concomitant decrease in vascular endothelial growth factor (VEGF) expression. Androgen withdrawal is known to induce apoptosis in Shionogi tumor cells. Surprisingly, tumor endothelial cells begin to undergo apoptosis before neoplastic cells, and rarefaction of tumor vessels precedes the decrease in tumor size. The regressing vessels begin to exhibit normal phenotype, i.e., lower diameter, tortuosity, vascular permeability, and leukocyte adhesion. Two weeks after castration, a second wave of angiogenesis and tumor growth begins with a concomitant increase in VEGF expression. Because human tumors often relapse following hormone–ablation therapy, our data suggest that these patients may benefit from combined anti-VEGF therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aspirin [acetylsalicylic acid (ASA)], along with its analgesic-antipyretic uses, is now also being considered for cardiovascular protection and treatments in cancer and human immunodeficiency virus infection. Although many of ASA's pharmacological actions are related to its ability to inhibit prostaglandin and thromboxane biosynthesis, some of its beneficial therapeutic effects are not completely understood. Here, ASA triggered transcellular biosynthesis of a previously unrecognized class of eicosanoids during coincubations of human umbilical vein endothelial cells (HUVEC) and neutrophils [polymorphonuclear leukocytes (PMN)]. These eicosanoids were generated with ASA but not by indomethacin, salicylate, or dexamethasone. Formation was enhanced by cytokines (interleukin 1 beta) that induced the appearance of prostaglandin G/H synthase 2 (PGHS-2) but not 15-lipoxygenase, which initiates their biosynthesis from arachidonic acid in HUVEC. Costimulation of HUVEC/PMN by either thrombin plus the chemotactic peptide fMet-Leu-Phe or phorbol 12-myristate 13-acetate or ionophore A23187 leads to the production of these eicosanoids from endogenous sources. Four of these eicosanoids were also produced when PMN were exposed to 15R-HETE [(15R)-15-hydroxy-5,8,11-cis-13-trans-eicosatetraenoic acid] and an agonist. Physical methods showed that the class consists of four tetraene-containing products from arachidonic acid that proved to be 15R-epimers of lipoxins. Two of these compounds (III and IV) were potent inhibitors of leukotriene B4-mediated PMN adhesion to HUVEC, with compound IV [(5S,6R,15R)-5,6,15-trihydroxy-7,9,13-trans-11-cis-eicosatetraenoi c acid; 15-epilipoxin A4] active in the nanomolar range. These results demonstrate that ASA evokes a unique class of eicosanoids formed by acetylated PGHS-2 and 5-lipoxygenase interactions, which may contribute to the therapeutic impact of this drug. Moreover, they provide an example of a drug's ability to pirate endogenous biosynthetic mechanisms to trigger new mediators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The circulating blood exerts a force on the vascular endothelium, termed fluid shear stress (FSS), which directly impacts numerous vascular endothelial cell (VEC) functions. For example, high rates of linear and undisturbed (i.e. laminar) blood flow maintains a protective and quiescent VEC phenotype. Meanwhile, deviations in blood flow, which can occur at vascular branchpoints and large curvatures, create areas of low, and/or oscillatory FSS, and promote a pro-inflammatory, pro-thrombotic and hyperpermeable phenotype. Indeed, it is known that these areas are prone to the development of atherosclerotic lesions. Herein, we show that cyclic nucleotide phosphodiesterase (PDE) 4D (PDE4D) activity is increased by FSS in human arterial endothelial cells (HAECs) and that this activation regulates the activity of cAMP-effector protein, Exchange Protein-activated by cAMP-1 (EPAC1), in these cells. Importantly, we also show that these events directly and critically impact HAEC responses to FSS, especially when FSS levels are low. Both morphological events induced by FSS, as measured by changes in cell alignment and elongation in the direction of FSS, and the expression of critical FSS-regulated genes, including Krüppel-like factor 2 (KLF2), endothelial nitric oxide synthase (eNOS) and thrombomodlin (TM), are mediated by EPAC1/PDE4D signaling. At a mechanistic level, we show that EPAC1/PDE4D acts through the vascular endothelial-cadherin (VECAD)/ platelet-cell adhesion molecule-1 (PECAM1)/vascular endothelial growth factor receptor 2 (VEGFR2) mechanosensor to activate downstream signaling though Akt. Given the critical role of PDE4D in mediating these effects, we also investigated the impact of various patterns of FSS on the expression of individual PDE genes in HAECs. Notably, PDE2A was significantly upregulated in response to high, laminar FSS, while PDE3A was upregulated under low, oscillatory FSS conditions only. These data may provide novel therapeutic targets to limit FSS-dependent endothelial cell dysfunction (ECD) and atherosclerotic development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regular exercise is known to be effective in the prevention and treatment of cardiovascular disease. Among the cardioprotectant mechanisms influenced by exercise, the endothelium is becoming recognised as a major target. Preservation of endothelial cell structure is vital for frictionless blood flow, prevention of macrophage and lipid infiltration and, ultimately, optimal vascular function. Exercise causes various kinds of mechanical, chemical and thermal stresses, and repeated exposure to these stresses may precondition the endothelial cell to future stresses through a number of different mechanisms. This review discusses stress-induced changes in endothelial cell morphology, biochemistry and components of platelet activation and cell adhesion that impact on endothelial cell structure. An enhanced understanding of the effects of exercise on the endothelial cell will assist in directing future research into the prevention of cardiovascular disease. (c) 2004 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Articular cartilage undergoes severe loss of proteoglycan and its constituent glycosaminoglycans (GAGs) in osteoarthritis. We hypothesize that the low GAG content of osteoarthritic cartilage renders the tissue susceptible to pathological vascularization. This was investigated using an in vitro angiogenesis model assessing endothelial cell adhesion to GAG-depleted cartilage explants. Bovine cartilage explants were treated with hyaluronidase to deplete GAG content and then seeded with fluorescently tagged human endothelial cells (HMEC-1). HMEC-1 adherence was assessed after 4 hr and 7 days. The effect of hyaluronidase treatment on GAG content, chondrocyte viability, and biochemical composition of the extracellular matrix was also determined. Hyaluronidase treatment reduced the GAG content of cartilage explants by 78 ± 3% compared with that of controls (p <0.0001). GAG depletion was associated with significantly more HMEC-1 adherence on both the surface (superficial zone) and the underside (deep zone) of the explants (both p <0.0001). The latter provided a more favorable environment for extended culture of HMEC-1 compared with the articulating surface. Hyaluronidase treatment altered the immunostaining for chondroitin sulfate epitopes, but not for lubricin. Our results support the hypothesis that articular cartilage GAGs are antiadhesive to endothelial cells and suggest that chondroitin sulfate and/or hyaluronan are responsible. The loss of these GAGs in osteoarthritis may allow osteochondral angiogenesis resulting in disease progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine whether non-enterobacterial endotoxins, which are likely to constitute the majority of the circulating endotoxin pool, may stimulate coronary artery endothelial cell activation. Interleukin-8 secretion, monocyte adhesion, and E-selectin expression were measured in human umbilical vein endothelial cells (HUVECs) and coronary artery endothelial cells (HCAECs) challenged in vitro with highly purified endotoxins of common host colonisers Escherichia coli, Porphyromonas gingivalis, Pseudomonas aeruginosa, and Bacteroides fragilis. HCAECs but not HUVECs expressed Toll-like receptor (TLR)-2 and were responsive to non-enterobacterial endotoxins. Transfection of TLR-deficient HEK-293 cells with TLR2 or TLR4/MD2 revealed that while E. coli endotoxin utilised solely TLR4 to signal, the endotoxins, deglycosylated endotoxins (lipid-A), and whole heat-killed bacteria of the other species stimulated TLR2-but not TLR4-dependent cell-signalling. Blockade of TLR2 with neutralizing antibody prevented HCAEC activation by non-enterobacterial endotoxins. Comparison of each endotoxin with E. coli endotoxin in limulus amoebocyte lysate assay revealed that the non-enterobacterial endotoxins are greatly underestimated by this assay, which has been used in all previous studies to estimate plasma endotoxin concentrations. Circulating non-enterobacterial endotoxins may be an underestimated contributor to endothelial activation and atherosclerosis in individuals at risk of increased plasma endotoxin burden.