978 resultados para EMISSION-SPECTRA
Resumo:
X-ray Raman scattering and x-ray emission spectroscopies were used to study the electronic properties and phase transitions in several condensed matter systems. The experimental work, carried out at the European Synchrotron Radiation Facility, was complemented by theoretical calculations of the x-ray spectra and of the electronic structure. The electronic structure of MgB2 at the Fermi level is dominated by the boron σ and π bands. The high density of states provided by these bands is the key feature of the electronic structure contributing to the high critical temperature of superconductivity in MgB2. The electronic structure of MgB2 can be modified by atomic substitutions, which introduce extra electrons or holes into the bands. X ray Raman scattering was used to probe the interesting σ and π band hole states in pure and aluminum substituted MgB2. A method for determining the final state density of electron states from experimental x-ray Raman scattering spectra was examined and applied to the experimental data on both pure MgB2 and on Mg(0.83)Al(0.17)B2. The extracted final state density of electron states for the pure and aluminum substituted samples revealed clear substitution induced changes in the σ and π bands. The experimental work was supported by theoretical calculations of the electronic structure and x-ray Raman spectra. X-ray emission at the metal Kβ line was applied to the studies of pressure and temperature induced spin state transitions in transition metal oxides. The experimental studies were complemented by cluster multiplet calculations of the electronic structure and emission spectra. In LaCoO3 evidence for the appearance of an intermediate spin state was found and the presence of a pressure induced spin transition was confirmed. Pressure induced changes in the electronic structure of transition metal monoxides were studied experimentally and were analyzed using the cluster multiplet approach. The effects of hybridization, bandwidth and crystal field splitting in stabilizing the high pressure spin state were discussed. Emission spectroscopy at the Kβ line was also applied to FeCO3 and a pressure induced iron spin state transition was discovered.
Resumo:
Energy loss spectra of superconducting YBa2Cu3O6.9' Bi1.5Pb0.5Ca2.5Sr1.5Cu3O10+δ and Tl2CaBa2Cu3O8 obtained at primary electron energies in the 170–310 eV range show features reflecting the commonalities in their electronic structures. The relative intensity of the plasmon peak shows a marked drop across the transition temperature. Secondary electron emission spectra of the cuprates also reveal some features of the electronic structure.
Resumo:
Electronic absorption spectroscopy and fluorescence spectroscopy have been used to investigate the interaction of the fullerenes C60 and C70 with diethylaniline, and with aromatic solvents such as benzene. C60 interacts weakly with aromatic amines in the ground state while C70 does not interact at all. Steady state fluorescence emission and lifetime measurements show that both C60 and C70 form excited state complexes (exciplexes) with the amines in non-aromatic solvents such as methylcyclohexane, but not in benzene. In benzene, only fluorescence quenching is observed due to the interaction between the π systems of the aromatic solvent and the fullerene in the ground state. This is also borne out by the systematic study of solvent effects on the absorption and emission spectra of the fullerenes.
Resumo:
The near-IR emission spectra of Er3+-Tm3+ codoped 70GeS(2)-20In(2)S(3)-10CsI chalcohalide glasses were studied with an 808 nm laser as an excitation source. A broad emission extending from 1.35 to 1.7 mu m with a FWHM of similar to 160 nm was recorded in a 0.1 mol.% Er2S3, 0.5 mol.% Tm2S3 codoped chalcohalide glass. The fluorescence decay curves of glasses were measured by monitoring the emissions of Tm3+ at 1460 nm and Er3+ at 1540 nm, and the lifetimes were obtained from the first-order exponential fit. The luminescence mechanism and the possible energy-transfer processes are discussed with respect to the energy-level diagram of Er3+ and Tm3+ ions. (C) 2008 Optical Society of America
Resumo:
Transparent Li2O-Ga2O3-SiO2 glass ceramics containing Cr3+/Ni2+ codoped LiGa5O8 nanocrystals were synthesized. The steady state emission spectra indicated that the near-infrared emission intensity of Ni2+ at 1300 nm in Cr3+/Ni2+ codoped glass ceramics was enhanced up to about 7.3 times compared with that in Ni2+ single-doped glass ceramics with 532 nm excitation. This enhancement in emission intensity was due to efficient energy transfer from Cr3+ to Ni2+, which was confirmed by time-resolved emission spectra. The energy transfer efficiency was estimated to be 85% and the energy transfer mechanism was discussed. (C) 2008 American Institute of Physics.
Resumo:
The fluorescence emission spectra of Cr:Yb:YAG crystal are measured and the effective stimulated emission cross section of the crystal are obtained from -80 degrees C to +80 degrees C. A linear temperature dependence between -80 degrees C and +80 degrees C is reported for the 1.03 mu m peak stimulated emission cross section of Cr:Yb:YAG crystal. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The fluorescence emission spectra of Cr:Nd:YAG crystal are measured and the effective stimulated emission cross-section of the crystal is obtained from -80 to +80 degrees C. A linear temperature dependence between -80 and +80 degrees C is reported for the 1.064-mu m peak stimulated emission cross-section of Cr:Nd:YAG crystal. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
In this article, we investigate the spontaneous emission properties of radiating molecules embedded in a chiral nematic liquid crystal, under the assumption that the electronic transition frequency is close to the photonic edge mode of the structure, i.e., at resonance. We take into account the transition broadening and the decay of electromagnetic field modes supported by the so-called "mirrorless"cavity. We employ the Jaynes-Cummings Hamiltonian to describe the electron interaction with the electromagnetic field, focusing on the mode with the diffracting polarization in the chiral nematic layer. As known in these structures, the density of photon states, calculated via the Wigner method, has distinct peaks on either side of the photonic band gap, which manifests itself as a considerable modification of the emission spectrum. We demonstrate that, near resonance, there are notable differences between the behavior of the density of states and the spontaneous emission profile of these structures. In addition, we examine in some detail the case of the logarithmic peak exhibited in the density of states in two-dimensional photonic structures and obtain analytic relations for the Lamb shift and the broadening of the atomic transition in the emission spectrum. The dynamical behavior of the atom-field system is described by a system of two first-order differential equations, solved using the Green's-function method and the Fourier transform. The emission spectra are then calculated and compared with experimental data. © 2013 American Physical Society.
Resumo:
In this article, we investigate the spontaneous emission properties of radiating molecules embedded in a chiral nematic liquid crystal, under the assumption that the electronic transition frequency is close to the photonic edge mode of the structure, i.e., at resonance. We take into account the transition broadening and the decay of electromagnetic field modes supported by the so-called "mirrorless"cavity. We employ the Jaynes-Cummings Hamiltonian to describe the electron interaction with the electromagnetic field, focusing on the mode with the diffracting polarization in the chiral nematic layer. As known in these structures, the density of photon states, calculated via the Wigner method, has distinct peaks on either side of the photonic band gap, which manifests itself as a considerable modification of the emission spectrum. We demonstrate that, near resonance, there are notable differences between the behavior of the density of states and the spontaneous emission profile of these structures. In addition, we examine in some detail the case of the logarithmic peak exhibited in the density of states in two-dimensional photonic structures and obtain analytic relations for the Lamb shift and the broadening of the atomic transition in the emission spectrum. The dynamical behavior of the atom-field system is described by a system of two first-order differential equations, solved using the Green's-function method and the Fourier transform. The emission spectra are then calculated and compared with experimental data.
Resumo:
In this work, The TBS glass microspheres doped with Er3+ for morphology-dependent resonances of upconversion emission were designed. The glass sample components are 25TiO(2)-27BaCO(3)-8Ba(NO3)(2)-6ZnO(2)-9CaCO(3)-5H(3)BO(3)-10SiO(2)-7water glass-3Er(2)O(3) (wt%), and the emission spectra of TBS glass and a TBS glass microsphere (about 48 mum in diameter) were measured under 633 nm excitation and discussed. The strong morphology-dependent resonances of upconversion luminescences in the microsphere were observed. The observed resonances could be assigned by using the well-known Lorenz-Mie Formalism. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
In this work, The TBS glass microspheres doped with Er3+ for morphology-dependent resonances of upconversion emission were designed. The glass sample components are 25TiO(2)-27BaCO(3)-8Ba(NO3)(2)-6ZnO(2)-9CaCO(3)-5H(3)BO(3)-10SiO(2)-7water glass-3Er(2)O(3) (wt%), and the emission spectra of TBS glass and a TBS glass microsphere (about 48 mum in diameter) were measured under 633 nm excitation and discussed. The strong morphology-dependent resonances of upconversion luminescences in the microsphere were observed. The observed resonances could be assigned by using the well-known Lorenz-Mie Formalism. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Many efforts have been devoted to exploring novel luminescent materials that do not contain expensive or toxic elements, or do not need mercury vapor plasma as the excitation source. In this paper, amorphous Al2O3 powder samples were prepared via the Pechini-type sol-gel process. The resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), photoluminescence (PL) excitation and emission spectra, kinetic decay, and electron paramagnetic resonance (EPR).
Resumo:
We reported, for the first time to the best of our knowledge, the Sm3+ -doped yttriurn oxysulfide phosphors has reddish orange long-lasting phosphorescence. The phosphor show prominent luminescence in reddish orange due to the electronic transitions of (4)G(5/2) --> H-6(J) (J = 5/2, 7/2, 9/2), the afterglow color of this type of phosphors is a mixture of the three above mentioned electronic transition emissions and have a little different when the concentration of the Sm3+ dopant changes. Synthesis procedure of the Sm3+-yttrium oxysulfide reddish orange phosphor through the flux fusion method with binary flux compositions was presented. The synthesized phosphors were analyzed using X-ray diffraction (XRD) to interpret the structural characterization. The XRD analysis result reveal that the Y2O2S:Sm3+ phosphor synthesized with a binary flux composition containing (S and Na2CO3 at a ratio of 1: 1 at 30 wt.% of total raw material) at 1050degreesC for 3 h was in single-phase. Luminescence properties of the Y2O2S:Sm3+ long-lasting phosphor was analyzed by measuring the excitation spectra, emission spectra and afterglow decay curve. The mechanism of the strong afterglow from Y2O2S:Sm3+ was also discussed in this paper.
Resumo:
The different ions doped KMgF3 single crystals are prepared by the vertical Bridgman method. The near-infrared absorption spectra for different parts of all as-growth crystals indicate that there is the best transparency in middle part. The correlation between the vibronic frequencies of Eu2+ and the site displacement of Cu+ co-doped ions is firstly studied, which indicates that Cu+ ions replace the site of the Mg2+ ions. The co-doped Eu2+ counteracts the charge misfit causing by the replacement of Mg2+ with Cu+. The overlapping of the emission spectra of the Eu2+ and the excitation spectra of the Cu+ results in the energy transfer from Eu2+ to Cu+.
Resumo:
Optically pumped stimulated emission behavior in an organic film was demonstrated in this study. The gain material consists of a laser dye perylene doped into polystyrene (PS) matrix in an appropriate weight ratio. The sample was transversely pumped by the three harmonic output of a mode-locked Nd:YAG laser. The change of the emission spectra showed a clear threshold action and gain narrowing phenomenon when increasing the excitation intensity. Three emission peaks were observed below the excitation threshold, which are locate at 446, 475 and 506 nm, respectively. However, only the gain narrowing peak centered at 475 nm could be detected above the threshold. The spectra narrowing observed results from the amplified spontaneous emission (ASE) in the gain material. (C) 2000 Elsevier Science S.A. All rights reserved.