850 resultados para EMG,Sport,Cycling,Muscle Synergy,Coactivation,Co-contraction,running


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to characterize the effect of a 5 km running time trial on the neuromuscular properties of the plantar flexors. Eleven well-trained triathletes performed a series of neuromuscular tests before and immediately after the run on a 200 m indoor track. Muscle activation (twitch interpolation) and normalized EMG activity were assessed during maximal voluntary contraction (MVC) of plantar flexors. Maximal soleus H-reflexes and M-waves were evoked at rest (i.e. H (MAX) and M (MAX), respectively) and during MVC (i.e. H (SUP) and M (SUP), respectively). MVC significantly declined (-27%; P < 0.001) after the run, due to decrease in muscle activation (-8%; P < 0.05) and M (MAX)-normalized EMG activity (-13%; P < 0.05). Significant reductions in M-wave amplitudes (M (MAX): -13% and M (SUP): -16%; P < 0.05) as well as H (MAX)/M (MAX) (-37%; P < 0.01) and H (SUP)/M (SUP) (-25%; P < 0.05) ratios occurred with fatigue. Following exercise, the single twitch was characterized by lower peak torque (-16%; P < 0.001) as well as shorter contraction (-19%; P < 0.001) and half-relaxation (-24%; P < 0.001) times. In conclusion, the reduction in plantar flexors strength induced by a 5 km running time trial is caused by peripheral adjustments, which are attributable to a failure of the neuromuscular transmission and excitation-contraction coupling. Fatigue also decreased the magnitude of efferent motor outflow from spinal motor neurons to the plantar flexors and part of this suboptimal neural drive is the result of an inhibition of soleus motoneuron pool reflex excitability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To examine the time course of alteration in neural process (spinal loop properties) during prolonged tennis playing, 12 competitive players performed a series of neuromuscular tests every 30 min during a 3-h match protocol. Muscle activation (twitch interpolation) and normalized EMG activity were assessed during maximal voluntary contraction (MVC) of plantar flexors. Spinal reflexes and M-waves were evoked at rest (i.e., H(max) and M(max) , respectively) and during MVC (i.e., H(sup) , V-wave, M(sup) , respectively). MVC torque declined significantly (P<0.001) across the match protocol, due to decrease (P<0.001) in muscle activation and in normalized EMG activity. The impairment in MVC was significantly correlated (r=0.77; P<0.05) with the decline in muscle activation. H(max) /M(max) (P<0.001), H(sup) /M(sup) (P<0.01) and V/M(sup) (P<0.05) ratios were depressed with fatigue and decreased by ∼80%, 46% and 61% at the end of exercise, respectively. Simultaneously, peak twitch torque and M-wave amplitude were significantly (P<0.01) altered with exercise, suggesting peripheral alterations. During prolonged tennis playing, the compromised voluntary strength capacity is linked to a reduced neural input to the working muscles. This central activation deficit partly results from a modulation in spinal loop properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to characterize the effect of a 5 km running time trial on the neuromuscular properties of the plantar flexors. Eleven well-trained triathletes performed a series of neuromuscular tests before and immediately after the run on a 200 m indoor track. Muscle activation (twitch interpolation) and normalized EMG activity were assessed during maximal voluntary contraction (MVC) of plantar flexors. Maximal soleus H-reflexes and M-waves were evoked at rest (i.e. H (MAX) and M (MAX), respectively) and during MVC (i.e. H (SUP) and M (SUP), respectively). MVC significantly declined (-27%; P < 0.001) after the run, due to decrease in muscle activation (-8%; P < 0.05) and M (MAX)-normalized EMG activity (-13%; P < 0.05). Significant reductions in M-wave amplitudes (M (MAX): -13% and M (SUP): -16%; P < 0.05) as well as H (MAX)/M (MAX) (-37%; P < 0.01) and H (SUP)/M (SUP) (-25%; P < 0.05) ratios occurred with fatigue. Following exercise, the single twitch was characterized by lower peak torque (-16%; P < 0.001) as well as shorter contraction (-19%; P < 0.001) and half-relaxation (-24%; P < 0.001) times. In conclusion, the reduction in plantar flexors strength induced by a 5 km running time trial is caused by peripheral adjustments, which are attributable to a failure of the neuromuscular transmission and excitation-contraction coupling. Fatigue also decreased the magnitude of efferent motor outflow from spinal motor neurons to the plantar flexors and part of this suboptimal neural drive is the result of an inhibition of soleus motoneuron pool reflex excitability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to develop co-operation between business units of the company operating in graphic industry. The development was done by searching synergy opportunities between these business units. The final aim was to form a business model, which is based on co-operation of these business units.The literature review of this thesis examines synergies and especially the process concerning the search and implementation of synergies. Also the concept of business model and its components are examined. The research was done by using qualitative research method. The main data acquiring method to the empirical part was theme interviews. The data was analyzed using thematisation and content analysis.The results of the study include seven identified possible synergies and a business model, which is based on the co-operation of the business units. The synergy opportunities are evaluated and the implementation order of the synergies is suggested. The presented synergies create the base for the proposed business model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Overuse injuries in violinists are a problem that has been primarily analyzed through the use of questionnaires. Simultaneous 3D motion analysis and EMG to measure muscle activity has been suggested as a quantitative technique to explore this problem by identifying movement patterns and muscular demands which may predispose violinists to overuse injuries. This multi-disciplinary analysis technique has, so far, had limited use in the music world. The purpose of this study was to use it to characterize the demands of a violin bowing task. Subjects: Twelve injury-free violinists volunteered for the study. The subjects were assigned to a novice or expert group based on playing experience, as determined by questionnaire. Design and Settings: Muscle activity and movement patterns were assessed while violinists played five bowing cycles (one bowing cycle = one down-bow + one up-bow) on each string (G, D, A, E), at a pulse of 4 beats per bow and 100 beats per minute. Measurements: An upper extremity model created using coordinate data from markers placed on the right acromion process, lateral epicondyle of the humerus and ulnar styloid was used to determine minimum and maximum joint angles, ranges of motion (ROM) and angular velocities at the shoulder and elbow of the bowing arm. Muscle activity in right anterior deltoid, biceps brachii and triceps brachii was assessed during maximal voluntary contractions (MVC) and during the playing task. Data were analysed for significant differences across the strings and between experience groups. Results: Elbow flexion/extension ROM was similar across strings for both groups. Shoulder flexion/extension ROM increaslarger for the experts. Angular velocity changes mirrored changes in ROM. Deltoid was the most active of the muscles assessed (20% MVC) and displayed a pattern of constant activation to maintain shoulder abduction. Biceps and triceps were less active (4 - 12% MVC) and showed a more periodic 'on and off pattern. Novices' muscle activity was higher in all cases. Experts' muscle activity showed a consistent pattern across strings, whereas the novices were more irregular. The agonist-antagonist roles of biceps and triceps during the bowing motion were clearly defined in the expert group, but not as apparent in the novice group. Conclusions: Bowing movement appears to be controlled by the shoulder rather than the elbow as shoulder ROM changed across strings while elbow ROM remained the same. Shoulder injuries are probably due to repetition as the muscle activity required for the movement is small. Experts require a smaller amount of muscle activity to perform the movement, possibly due to more efficient muscle activation patterns as a result of practice. This quantitative multidisciplinary approach to analysing violinists' movements can contribute to fuller understanding of both playing demands and injury mechanisms .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human neuromuscular system is susceptible to changes within the thermal environment. Cold extrinsic temperatures can significantly reduce muscle and nervous system function and communication, which can have consequences for motor performance. A repeated measures design protocol exposed participants to a 12°C cold water immersion (CWI) up to the ankle, knee, and hip to determine the effect that reduced skin and muscle temperature had on balance and strength task execution. Although a linear reduction in the ability to perform balance tasks was seen from the control condition through to the hip CWI, results from the study indicated a significant reduction in dynamic balance (Star Excursion Balance Test reach distance) performance from only the hip CWI (P<0.05). This reduced performance could have been due to an increase in joint stiffness, increased agonist-antagonist co-contraction, and/or reduced isokinetic muscular strength. Reduced physical performance due to cold temperature could negatively impact outdoor recreational athletics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: due to the presence of major masticatory dysfunction in patients with temporomandibular joint (TMJ) ankylosis, this study analyzed mouth opening and EMG activity of masticatory muscles in order to detect changes in these parameters after surgical release of mandible ankylosis. Method: in 7 patients with temporomandibular ankylosis, between 7 and 30 years (median = 9 years), the distance was measured as interincisal maximum active (DIMA) and we recorded the electromyographic activity (EMG) of masseter and temporal muscles during voluntary isometric contraction (VIC) and chewing, comparing the data before and after surgery using the Wilcoxon test. Results: higher values were observed for DIMA after surgery (p=0.0277), the asymmetry index showed no difference between the two evaluated periods for both studied muscles, the values of the EMG during VIC decreased after surgery for the right (p=0.0179) and left (p=0.0179) masseter but not for the temporal muscle, there were no changes in EMG values for the studied muscles during mastication. Conclusion: the surgical release of TMJ ankylosis resulted in an increase of mouth opening and decreased amplitude of action potentials generated during maximum isometric voluntary contraction of the masseter muscle on both sides, this did not change the asymmetry index of the masseter and temporal as well as the electromyographic activity of the temporal muscle bilaterally during isometric contraction and masseter and temporal muscles during mastication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skeletal muscle force evaluation is difficult to implement in a clinical setting. Muscle force is typically assessed through either manual muscle testing, isokinetic/isometric dynamometry, or electromyography (EMG). Manual muscle testing is a subjective evaluation of a patient’s ability to move voluntarily against gravity and to resist force applied by an examiner. Muscle testing using dynamometers adds accuracy by quantifying functional mechanical output of a limb. However, like manual muscle testing, dynamometry only provides estimates of the joint moment. EMG quantifies neuromuscular activation signals of individual muscles, and is used to infer muscle function. Despite the abundance of work performed to determine the degree to which EMG signals and muscle forces are related, the basic problem remains that EMG cannot provide a quantitative measurement of muscle force. Intramuscular pressure (IMP), the pressure applied by muscle fibers on interstitial fluid, has been considered as a correlate for muscle force. Numerous studies have shown that an approximately linear relationship exists between IMP and muscle force. A microsensor has recently been developed that is accurate, biocompatible, and appropriately sized for clinical use. While muscle force and pressure have been shown to be correlates, IMP has been shown to be non-uniform within the muscle. As it would not be practicable to experimentally evaluate how IMP is distributed, computational modeling may provide the means to fully evaluate IMP generation in muscles of various shapes and operating conditions. The work presented in this dissertation focuses on the development and validation of computational models of passive skeletal muscle and the evaluation of their performance for prediction of IMP. A transversly isotropic, hyperelastic, and nearly incompressible model will be evaluated along with a poroelastic model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: Stochastic resonance whole body vibrations (SR-WBV) may reduce and prevent musculoskeletal problems (MSP). The aim of this study was to evaluate how activities of the lumbar erector spinae (ES) and of the ascending and descending trapezius (TA, TD) change in upright standing position during SR-WBV. METHODS: Nineteen female subjects completed 12 series of 10 seconds of SR-WBV at six different frequencies (2, 4, 6, 8, 10, 12Hz) and two types of "noise"-applications. An assessment at rest had been executed beforehand. Muscle activities were measured with EMG and normalized to the maximum voluntary contraction (MVC%). For statistical testing a three-factorial analysis of variation (ANOVA) was applied. RESULTS: The maximum activity of the respective muscles was 14.5 MVC% for the ES, 4.6 MVC% for the TA (12Hz with "noise" both), and 7.4 MVC% for the TD (10Hz without "noise"). Furthermore, all muscles varied significantly at 6Hz and above (p⋜0.047) compared to the situation at rest. No significant differences were found at SR-WBV with or without "noise". CONCLUSIONS: In general, muscle activity during SR-WBV is reasonably low and comparable to core strength stability exercises, sensorimotor training and "abdominal hollowing" in water. SR-WBV may be a therapeutic option for the relief of MSP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim. The purpose of this experiment was to assess the levels of muscle soreness, serum total cholesterol (TC) and creatine kinase (CK) in the first 48 hours following fatiguing eccentric exercise performed with the triceps brachii. Methods. Eleven untrained male college students performed a total of 50 eccentric elbow extensions in 8 sets (6x7 and 2x4) with a load equal to 85% of their maximal concentric elbow extension strength. Isometric elbow extension strength, muscle soreness and circumference, and serum CK and TC concentrations were measured before, immediately after, and 2, 24 and 48 hours after the exercise. Results. Statistically reliable changes in isometric strength, serum CK and TC, muscle soreness and upper arm circumference occurred within the first 48 hours following eccentric exercise. Serum TC concentrations exhibited a very rapid (within 2 hours) reduction from pre-exercise values after eccentric exercise to a relatively stable concentration of approximately 85% of baseline. Conclusion. These results suggest that serum TC concentration may follow the time-course of reductions in force generating capacity more closely than other biochemical markers of muscle damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Although the beneficial effects of estrogen use on cardiovascular and cognitive function in postmenopausal women have been recently discredited, controversy remains regarding its usefulness for maintaining skeletal muscle mass or strength. Therefore, the purpose of this study was to determine whether estrogen use is associated with enhanced muscle composition and, if so, whether this translates into improved strength and physical function. Methods: Cross-sectional analysis of 840 well-functioning community-dwelling white women (current estrogen replacement therapy (ERT) users = 259, nonusers = 581) aged 70-79 yr participating in the Health, Aging and Body Composition Study. Muscle composition of the midthigh by computed tomography included cross-sectional area (CSA) of the quadriceps, hamstrings, intermuscular fat and subcutaneous fat, and muscle attenuation in Hounsfield units (HU) as a measure of muscle density. Isometric hand grip and isokinetic knee extensor strength were assessed by dynamometry. Physical function was assessed using a summary scale that included usual 6-m walk and narrow walk speed, repeated chair stands, and standing balance. Results: In analyses of covariance adjusted for relevant confounders. quadriceps muscle CSA and HU were greater in Current ERT than non-ERT women (P < 0.05). Grip strength was also greater (P < 0.05) in women taking ERT while knee extensor strength approached significance (P < 0.10). However, differences in muscle composition and strength were modest at <= 3.3%. There was no difference by ERT status for the hamstring, muscles. fat CSA. or for physical function. Conclusion: The associations between ERT and muscle composition and strength were minor and did not translate into improved physical function. Initiation of ERT for preservation of muscle composition and function may not be indicated.