968 resultados para ELASTIC SOLIDS
Resumo:
A three-dimensional analysis is presented for the bending problem of finite thick plates with through-the-thickness cracks. A general solution is obtained for Navier's equations of the theory of elasticity. It is found that the in-plane stresses and the transverse normal stress at the crack front are singular with an inverse square root singularity, while the transverse shear stresses are of the order of unity. Results from a numerical study indicate that the stress intensity factor, which varies across the thickness, is influenced by the thickness ratio in a significant manner. Results from a parametric study and those from a comparative study with existing finite element values are presented.
Resumo:
Elastic properties of Li2O-PbO-B2O3 glasses have been investigated using sound velocity measurements at 10 MHz. Four series of glasses have been investigated with different concentrations of Li2O, PbO and B2O3. The variations of molar volume have been examined for the influences of Li2O and PbO. The elastic moduli reveal trends in their compositional dependence. The bulk and shear modulus increases monotonically with increase in the concentration of tetrahedral boron which increases network dimensionality. The variation of bulk moduli has also been correlated to the variation in energy densities. The Poisson's ratio found to be insensitive to the concentration of tetrahedral boron in the structure. The experimental Debye temperatures are in good agreement with the expected theoretical values. Experimental observations have been examined in view, the presence of borate network and the possibility of non-negligible participation of lead in network formation. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We have measured the internal friction and speed of sound in several polycrystalline alloys, using compound torsional oscillators at frequencies between 60 kHz and 100 kHz and temperatures between 50 mK and 100 K. By combining these data with existing elastic and thermal data on similar alloys, we find that those alloys which can undergo diffusionsless phase transitions, such as Ti:Nb, Ti:V, or Zr:Nb in certain ranges of composition have glasslike excitations, since they have elastic properties which agree in magnitude and temperature dependence with those of amorphous solids. By contrast, crystalline continuous solution alloys, such as Nb:Ta, or alloys with diffusive phase transitions, such as high-pressure quenched Al94Si6, have the same elastic properties as are known for crystals.
Resumo:
Adhesive interaction between impacting bodies can cause energy loss, even in an otherwise elastic impact. Adhesion force induces tensile stress in the bodies, which modifies the stress wave profile and influences the restitution behavior. We investigate this effect by developing a finite element framework, which incorporates a Lennard-Jones-type potential for modeling the adhesive interaction between volume elements. With this framework, the classical problems in contact mechanics can be revisited without the restrictive surface-force approximation. In this paper, we study the longitudinal impact of an elastic cylinder on a rigid half-space with adhesion. In the absence of adhesion, this problem reduces to the impact between two identical cylinders in which there is no energy loss. Adhesion causes a fraction of energy in the stress waves to remain in the cylinder as residual stress waves. This apparent loss in kinetic energy is shown to be a unique function of maximum tensile strain energy. We have developed a 1-D model in terms of interaction force parameters, velocity and material properties to estimate the tensile stain energy. We show that this model can be used to predict practically important phenomena like capture wherein the impacting bodies stick together. (C) 2013 Elsevier Masson SAS. All rights reserved.
Resumo:
A state-based peridynamic formulation for linear elastic shells is presented. The emphasis is on introducing, possibly for the first time, a general surface based peridynamic model to represent the deformation characteristics of structures that have one geometric dimension much smaller than the other two. A new notion of curved bonds is exploited to cater for force transfer between the peridynamic particles describing the shell. Starting with the three dimensional force and deformation states, appropriate surface based force, moment and several deformation states are arrived at. Upon application on the curved bonds, such states yield the necessary force and deformation vectors governing the motion of the shell. By incorporating a shear correction factor, the formulation also accommodates analysis of shells that have higher thickness. In order to attain this, a consistent second order approximation to the complementary energy density is considered and incorporated in peridynamics via constitutive correspondence. Unlike the uncoupled constitution for thin shells, a consequence of a first order approximation, constitutive relations for thick shells are fully coupled in that surface wryness influences the in-plane stress resultants and surface strain the moments. Our proposal on the peridynamic shell theory is numerically assessed against simulations on static deformation of spherical and cylindrical shells, that of flat plates and quasi-static fracture propagation in a cylindrical shell. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
A dislocation theory of fracture criterion for the mixed dislocation emission and cleavage process in an anisotropic solid is developed in this paper. The complicated cases involving mixed-mode loading are considered here. The explicit formula for dislocations interaction with a semi-infinite crack is obtained. The governing equation for the critical condition of crack cleavage in an anisotropic solid after a number dislocation emissions is established. The effects of elastic anisotropy, crack geometry and load phase angle on the critical energy release rate and the total number of the emitted dislocations at the onset of cleavage are analysed in detail. The analyses revealed that the critical energy release rates can increase to one or two magnitudes larger than the surface energy because of the dislocation emission. It is also found elastic anisotropy and crystal orientation have significant effects on the critical energy release rates. The anisotropic values can be several times the isotropic value in one crack orientation. The values may be as much as 40% less than the isotropic value in another crack orientation and another anisotropy parameter. Then the theory is applied to a fee single crystal. An edge dislocation can emit from the crack tip along the most highly shear stressed slip plane. Crack cleavage can occur along the most highly stressed slip plane after a number of dislocation emissions. Calculation is carried out step by step. Each step we should judge by which slip system is the most highly shear stressed slip system and which slip system has the largest energy release rate. The calculation clearly shows that the crack orientation and the load phase angle have significant effects on the crystal brittle-ductile behaviours.
Resumo:
We derive a relationship between the initial unloading slope, contact depth, and the instantaneous relaxation modulus for indentation in linear viscoelastic solids by a rigid indenter with an arbitrary axisymmetric smooth profile. Although the same expression is well known for indentation in elastic and in elastic-plastic solids, we show that it is also true for indentation in linear viscoelastic solids, provided that the unloading rate is sufficiently fast. Furthermore, the same expression holds true for both fast loading and unloading. These results should provide a sound basis for using the relationship for determining properties of viscoelastic solids using indentation techniques.
Resumo:
A new phenomenological strain gradient theory for crystalline solid is proposed. It fits within the framework of general couple stress theory and involves a single material length scale Ics. In the present theory three rotational degrees of freedom omega (i) are introduced, which denote part of the material angular displacement theta (i) and are induced accompanying the plastic deformation. omega (i) has no direct dependence upon u(i) while theta = (1 /2) curl u. The strain energy density omega is assumed to consist of two parts: one is a function of the strain tensor epsilon (ij) and the curvature tensor chi (ij), where chi (ij) = omega (i,j); the other is a function of the relative rotation tensor alpha (ij). alpha (ij) = e(ijk) (omega (k) - theta (k)) plays the role of elastic rotation reason The anti-symmetric part of Cauchy stress tau (ij) is only the function of alpha (ij) and alpha (ij) has no effect on the symmetric part of Cauchy stress sigma (ij) and the couple stress m(ij). A minimum potential principle is developed for the strain gradient deformation theory. In the limit of vanishing l(cs), it reduces to the conventional counterparts: J(2) deformation theory. Equilibrium equations, constitutive relations and boundary conditions are given in detail. For simplicity, the elastic relation between the anti-symmetric part of Cauchy stress tau (ij), and alpha (ij) is established and only one elastic constant exists between the two tensors. Combining the same hardening law as that used in previously by other groups, the present theory is used to investigate two typical examples, i.e., thin metallic wire torsion and ultra-thin metallic beam bend, the analytical results agree well with the experiment results. While considering the, stretching gradient, a new hardening law is presented and used to analyze the two typical problems. The flow theory version of the present theory is also given.
Resumo:
The work done during indentation is examined using dimensional analysis and finite element calculations for conical indentation in elastic-plastic solids with work hardening. An approximate relationship between the ratio of hardness to elastic modulus and the ratio of irreversible work to total work in indentation is found. Consequently, the ratio of hardness to elastic modulus may be obtained directly from measuring the work of indentation. Together with a well-known relationship between elastic modulus, initial unloading slope, and contact area, a new method is then suggested for estimating the hardness and modulus of solids using instrumented indentation with conical or pyramidal indenters.
Resumo:
Using analytical and finite element modeling, we examine the relationships between initial unloading slope, contact depth, and mechanical properties for spherical indentation in viscoelastic solids with either displacement or load as the independent variable. We then investigate whether the Oliver-Pharr method for determining the contact depth and contact radius, originally proposed for indentation in elastic and elastic-plastic solids, is applicable to spherical indentation in viscoelastic solids. Finally, the analytical and numerical results are used to answer questions raised in recent literature about measuring viscoelastic properties from instrumented spherical indentation experiments.
Resumo:
Micro-indentation tests at scales of the order of sub-micron show that the measured hardness increases strongly with decreasing indent depth or indent size, which is frequently referred to as the size effect. At the same time, at micron or sub-micron scale, another effect, which is referred to as the geometrical size effects such as crystal grain size effect, thin film thickness effect, etc., also influences the measured material hardness. However, the trends are at odds with the size-independence implied by the conventional elastic-plastic theory. In the present research, the strain gradient plasticity theory (Fleck and Hutchinson) is used to model the composition effects (size effect and geometrical effect) for polycrystal material and metal thin film/ceramic substrate systems when materials undergo micro-indenting. The phenomena of the "pile-up" and "sink-in" appeared in the indentation test for the polycrystal materials are also discussed. Meanwhile, the micro-indentation experiments for the polycrystal Al and for the Ti/Si_3N_4 thin film/substrate system are carried out. By comparing the theoretical predictions with experimental measurements, the values and the variation trends of the micro-scale parameter included in the strain gradient plasticity theory are predicted.
Resumo:
要: We have recently proposed a generalized JKR model for non-slipping adhesive contact between two elastic spheres subjected to a pair of pulling forces and a mismatch strain (Chen, S., Gao, H., 2006c. Non-slipping adhesive contact between mismatched elastic spheres: a model of adhesion mediated deformation sensor. J. Mech. Phys. Solids 54, 1548-1567). Here we extend this model to adhesion between two mismatched elastic cylinders. The attention is focused on how the mismatch strain affects the contact area and the pull-off force. It is found that there exists a critical mismatch strain at which the contact spontaneously dissociates. The analysis suggests possible mechanisms by which mechanical deformation can affect binding between cells and molecules in biology.
Resumo:
We derive a relationship between the initial unloading slope, contact depth, and the instantaneous relaxation modulus for displacement-controlled indentation in linear viscoelastic solids by a rigid indenter with an arbitrary axisymmetric smooth profile. While the same expression is well known for indentation in elastic and in elastic–plastic solids, we show that it is also true for indentation in linear viscoelastic solids, provided that the unloading rate is sufficiently fast. When the unloading rate is slow, a “hold” period between loading and unloading can be used to provide a correction term for the initial unloading slope equation. Finite element calculations are used to illustrate the methods of fast unloading and “hold-at-the-maximum-indenter-displacement” for determining the instantaneous modulus using spherical indenters.
Resumo:
Geckos and many insects have evolved elastically anisotropic adhesive tissues with hierarchical structures that allow these animals not only to adhere robustly to rough surfaces but also to detach easily upon movement. In order to improve Our understanding of the role of elastic anisotropy in reversible adhesion, here we extend the classical JKR model of adhesive contact mechanics to anisotropic materials. In particular, we consider the plane strain problem of a rigid cylinder in non-slipping adhesive contact with a transversely isotropic elastic half space with the axis of symmetry oriented at an angle inclined to the surface. The cylinder is then subjected to an arbitrarily oriented pulling force. The critical force and contact width at pull-off are calculated as a function of the pulling angle. The analysis shows that elastic anisotropy leads to an orientation-dependent adhesion strength which can vary strongly with the direction of pulling. This study may suggest possible mechanisms by which reversible adhesion devices can be designed for engineering applications. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The paper revisits a simple beam model used by Chater et al. (1983, Proc. IUTAM Symp. Collapse, Cambridge University Press) to examine the dynamics of propagating buckles on it. It was found that, if a buckle is initiated at a constant pressure higher than the propagation pressure of the model (P-p), the buckle accelerates and gradually reaches a constant velocity which depends upon the pressure, while if it is initiated at P-p, the buckle propagates at a velocity which depends upon the initial imperfection. The causes for the difference are also investigated.