171 resultados para EJECTA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The final fate of massive stars depends on many factors. Theory suggests that some with initial masses greater than 25 to 30 solar masses end up as Wolf-Rayet stars, which are deficient in hydrogen in their outer layers because of mass loss through strong stellar winds. The most massive of these stars have cores which may form a black hole and theory predicts that the resulting explosion of some of them produces ejecta of low kinetic energy, a faint optical luminosity and a small mass fraction of radioactive nickel. An alternative origin for low-energy supernovae is the collapse of the oxygen-neon core of a star of 7-9 solar masses. No weak, hydrogen-deficient, core-collapse supernovae have hitherto been seen. Here we report that SN 2008ha is a faint hydrogen-poor supernova. We propose that other similar events have been observed but have been misclassified as peculiar thermonuclear supernovae (sometimes labelled SN 2002cx-like events). This discovery could link these faint supernovae to some long-duration gamma-ray bursts, because extremely faint, hydrogen-stripped core-collapse supernovae have been proposed to produce such long gamma-ray bursts, the afterglows of which do not show evidence of associated supernovae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present mid-infrared (MIR) spectroscopy of a Type II-plateau supernova, SN 2004dj, obtained with the Spitzer Space Telescope, spanning 106--1393d after explosion. MIR photometry plus optical/near-IR observations are also reported. An early-time MIR excess is attributed to emission from non-silicate dust formed within a cool dense shell (CDS). Most of the CDS dust condensed between 50d and 165d, reaching a mass of $0.3x^(-5)Msun. Throughout the observations much of the longer wavelength (>10microns) part of the continuum is explained as an IR echo from interstellar dust. The MIR excess strengthened at later times. We show that this was due to thermal emission from warm, non-silicate dust formed in the ejecta. Using optical/near-IR line-profiles and the MIR continua, we show that the dust was distributed as a disk whose radius appeared to be slowly shrinking. The disk radius may correspond to a grain destruction zone caused by a reverse shock which also heated the dust. The dust-disk lay nearly face-on, had high opacities in the optical/near-IR regions, but remained optically thin in the MIR over much of the period studied. Assuming a uniform dust density, the ejecta dust mass by 996d was 0.5+/-0.1 x 10^(-4)Msun, and exceeded 10^(-4)Msun by 1393d. For a dust density rising toward the center the limit is higher. Nevertheless, this study suggests that the amount of freshly-synthesized dust in the SN 2004dj ejecta is consistent with that found from previous studies, and adds further weight to the claim that such events could not have been major contributors to the cosmic dust budget.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present near- (NIR) and mid-infrared (MIR) photometric data of the Type Ibn supernova (SN) 2006jc obtained with the United Kingdom Infrared Telescope (UKIRT), the Gemini North Telescope and the Spitzer Space Telescope between days 86 and 493 post-explosion. We find that the IR behaviour of SN 2006jc can be explained as a combination of IR echoes from two manifestations of circumstellar material. The bulk of the NIR emission arises from an IR echo from newly condensed dust in a cool dense shell (CDs) produced by the interaction of the ejecta Outward shock with a dense shell of circumstellar material ejected by the progenitor in a luminous blue variable (LBV)-like outburst about two years prior to the SN explosion. The CDs dust mass reaches a modest 3.0 x 10(-4) M-circle dot by day 230. While dust condensation within a CDs formed behind the ejecta inward shock has been proposed before for one event (SN 1998S), SN 2006jc is the first one showing evidence for dust condensation in a CDs formed behind the ejecta outward shock in the circumstellar material. At later epochs, a substantial and growing contribution to the IR fluxes arises from an IR echo from pre-existing dust in the progenitor wind. The mass of the pre-existing circumstellar medium (CSM) dust is at least similar to 8 x 10(-3) M-circle dot. This paper therefore adds to the evidence that mass-loss from the progenitors of core-collapse SNe could be a major source of dust in the Universe. However, yet again, we see no direct evidence that the explosion of an SN produces anything other than a very modest amount of dust.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present mid-infrared (5.2-15.2 mu m) spectra of the Type Ia supernovae (SNe Ia) 2003hv and 2005df observed with the Spitzer Space Telescope. These are the first observed mid-infrared spectra of thermonuclear supernovae, and show strong emission from fine-structure lines of Ni, Co, S, and Ar. The detection of Ni emission in SN 2005df 135 days after the explosion provides direct observational evidence of high-density nuclear burning forming a significant amount of stable Ni in a SN Ia. The SN 2005df Ar lines also exhibit a two-pronged emission profile, implying that the Ar emission deviates significantly from spherical symmetry. The spectrum of SN 2003hv also shows signs of asymmetry, exhibiting blueshifted [Co (III)], which matches the blueshift of [Fe (II)] lines in nearly coeval near-infrared spectra. Finally, local thermodynamic equilibrium abundance estimates for the yield of radioactive Ni-56 give M-56Ni approximate to 0.5 M-circle dot, for SN 2003hv, but only M-56Ni approximate to 0.13-0.22 M-circle dot for the apparently subluminous SN 2005df, supporting the notion that the luminosity of SNe Ia is primarily a function of the radioactive 56Ni yield. The observed emission-line profiles in the SN 2005df spectrum indicate a chemically stratified ejecta structure, which matches the predictions of delayed detonation (DD) models, but is entirely incompatible with current three-dimensional deflagration models. Furthermore, the degree that this layering persists to the innermost regions of the supernova is difficult to explain even in a DD scenario, where the innermost ejecta are still the product of deflagration burning. Thus, while these results are roughly consistent with a delayed detonation, it is clear that a key piece of physics is still missing from our understanding of the earliest phases of SN Ia explosions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present optical and infrared observations of the unusual Type Ia supernova (SN) 2004eo. The light curves and spectra closely resemble those of the prototypical SN 1992A, and the luminosity at maximum (M-B = -19.08) is close to the average for a Type Ia supernova (SN Ia). However, the ejected Ni-56 mass derived by modelling the bolometric light curve (about 0.45M(circle dot)) lies near the lower limit of the Ni-56 mass distribution observed in normal SNe Ia. Accordingly, SN 2004eo shows a relatively rapid post-maximum decline in the light curve [Delta m(15)(B)(true) = 1.46], small expansion velocities in the ejecta and a depth ratio Si II lambda 5972/ Si II lambda 6355 similar to that of SN 1992A. The physical properties of SN 2004eo cause it to fall very close to the boundary between the faint, low-velocity gradient and high-velocity gradient subgroups proposed by Benetti et al. Similar behaviour is seen in a few other SNe Ia. Thus, there may in fact exist a few SNe Ia with intermediate physical properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a new, detailed analysis of late-time mid-infrared observations of the Type II-P supernova (SN) 2003gd. At about 16 months after the explosion, the mid-IR flux is consistent with emission from 4 x 10(-5) M. of newly condensed dust in the ejecta. At 22 months emission from pointlike sources close to the SN position was detected at 8 and 24 mu m. By 42 months the 24 mu m flux had faded. Considerations of luminosity and source size rule out the ejecta of SN 2003gd as the main origin of the emission at 22 months. A possible alternative explanation for the emission at this later epoch is an IR echo from preexisting circumstellar or interstellar dust. We conclude that, contrary to the claim of Sugerman and coworkers, the mid-IR emission from SN 2003gd does not support the presence of 0.02 M. of newly formed dust in the ejecta. There is, as yet, no direct evidence that core-collapse supernovae are major dust factories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present late-time ( 590 - 994 days) mid-IR photometry of the normal but highly reddened Type IIP supernova SN 2002hh. Bright, cool, slowly fading emission is detected from the direction of the supernova. Most of this flux appears not to be driven by the supernova event but instead probably originates in a cool, obscured star formation region or molecular cloud along the line of sight. We also show, however, that the declining component of the flux is consistent with an SN-powered IR echo from a dusty progenitor CSM. Mid-IR emission could also be coming from newly condensed dust and/or an ejecta/CSM impact, but their contributions are likely to be small. For the case of a CSM-IR echo, we infer a dust mass of as little as 0.036 M-. with a corresponding CSM mass of 3.6(0.01/ r(dg)) M-., where rdg is the dust-to-gas mass ratio. Such a CSM would have resulted from episodic mass loss whose rate declined significantly about 28,000 years ago. Alternatively, an IR echo from a surrounding, dense, dusty molecular cloud might also have been responsible for the fading component. Either way, this is the first time that an IR echo has been clearly identified in a Type IIP supernova. We find no evidence for or against the proposal that Type IIP supernovae produce large amounts of dust via grain condensation in the ejecta. However, within the CSM-IR echo scenario, the mass of dust derived implies that the progenitors of the most common of core-collapse supernovae may make an important contribution to the universal dust content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optical and near-infrared (near-IR) observations of the Type Ic supernova (SN Ic) 2004aw are presented, obtained from -3 to +413 d with respect to the B-band maximum. The photometric evolution is characterized by a comparatively slow post-maximum decline of the light curves. The peaks in redder bands are significantly delayed relative to the bluer bands, the I-band maximum occurring 8.4 d later than that in B. With an absolute peak magnitude of -18.02 in the V band the SN can be considered fairly bright, but not exceptional. This also holds for the U through I bolometric light curve, where SN 2004aw has a position intermediate between SNe 2002ap and 1998bw. Spectroscopically SN 2004aw provides a link between a normal SN Ic like SN 1994I and the group of broad-lined SNe Ic. The spectral evolution is rather slow, with a spectrum at day +64 being still predominantly photospheric. The shape of the nebular [O-I] lambda lambda 6300, 6364 line indicates a highly aspherical explosion. Helium cannot be unambiguously identified in the spectra, even in the near-IR. Using an analytical description of the light-curve peak we find that the total mass of the ejecta in SN 2004aw is 3.5-8.0 M-circle dot, significantly larger than that in SN 1994I, although not as large as in SN 1998bw. The same model suggests that about 0.3 M-circle dot of Ni-56 has been synthesized in the explosion. No connection to a GRB can be firmly established.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidence of high-velocity features (HVFs) such as those seen in the near-maximum spectra of some Type Ia supernovae (SNe Ia; e. g., SN 2000cx) has been searched for in the available SN Ia spectra observed earlier than 1 week before B maximum. Recent observational efforts have doubled the number of SNe Ia with very early spectra. Remarkably, all SNe Ia with early data ( seven in our Research Training Network sample and 10 from other programs) show signs of such features, to a greater or lesser degree, in Ca II IR and some also in the Si II lambda 6355 line. HVFs may be interpreted as abundance or density enhancements. Abundance enhancements would imply an outer region dominated by Si and Ca. Density enhancements may result from the sweeping up of circumstellar material (CSM) by the highest velocity SN ejecta. In this scenario, the high incidence of HVFs suggests that a thick disk and/or a high-density companion wind surrounds the exploding white dwarf, as may be the case in single degenerate systems. Large-scale angular fluctuations in the radial density and abundance distribution may also be responsible: this could originate in the explosion and would suggest a deflagration as the more likely explosion mechanism. CSM interaction and surface fluctuations may coexist, possibly leaving different signatures on the spectrum. In some SNe, the HVFs are narrowly confined in velocity, suggesting the ejection of blobs of burned material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An optical photometric and spectroscopic analysis of the slowly-evolving type IIn SN 2007rt is presented, covering a duration of 481 days after discovery. Its earliest spectrum, taken approximately 100 days after the explosion epoch, indicates the presence of a dense circumstellar medium, with which the supernova ejecta is interacting. This is supported by the slowly-evolving light curve. A notable feature in the spectrum of SN 2007rt is the presence of a broad He i 5875 line, not usually detected in type IIn supernovae. This may imply that the progenitor star has a high He/H ratio, having shed a significant portion of its hydrogen shell via mass-loss. An intermediate resolution spectrum reveals a narrow Ha P-Cygni profile, the absorption component of which has a width of 128 km s-1. This slow velocity suggests that the progenitor of SN 2007rt recently underwent mass-loss with wind speeds comparable to the lower limits of those detected in luminous blue variables. Asymmetries in the line profiles of H and He at early phases bears some resemblance to double-peaked features observed in a number of Ib/c spectra. These asymmetries may be indicative of an asymmetric or bipolar outflow or alternatively dust formation in the fast expanding ejecta. In addition, the late time spectrum, at over 240 days post-explosion, shows clear evidence for the presence of newly formed dust.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interstellar medium is the tenuous gas that fills the space between the stars of our Galaxy. Though insignificant optically, its variety and richness are revealed in observations at other wavelengths. From relatively dense clouds of gas new stars are formed. The deme clouds show, through infrared and millimetre wave measurements, a complex chemistry. We describe in particular how an understanding of the chemistry brings with it information about the nature of the clouds and how they are evolving. We show how the techniques that have been developed for interstellar clouds may also be applied to circumstellar environments and to ejecta from transient dramatic events such as novae and supernovae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present adaptive optics imaging of the core-collapse supernova (SN) 2009md, which we use together with archival Hubble Space Telescope data to identify a coincident progenitor candidate. We find the progenitor to have an absolute magnitude of V=-4.63+0.3-0.4 mag and a colour of V-I= 2.29+0.25-0.39 mag, corresponding to a progenitor luminosity of log L/L?similar to 4.54 +/- 0.19 dex. Using the stellar evolution code STARS, we find this to be consistent with a red supergiant progenitor with M= 8.5+6.5-1.5 M?. The photometric and spectroscopic evolution of SN 2009md is similar to that of the class of sub-luminous Type IIP SNe; in this paper we compare the evolution of SN 2009md primarily to that of the sub-luminous SN 2005cs. We estimate the mass of 56Ni ejected in the explosion to be (5.4 +/- 1.3) x 10-3 M? from the luminosity on the radioactive tail, which is in agreement with the low 56Ni masses estimated for other sub-luminous Type IIP SNe. From the light curve and spectra, we show the SN explosion had a lower energy and ejecta mass than the normal Type IIP SN 1999em. We discuss problems with stellar evolutionary models, and the discrepancy between low observed progenitor luminosities (log L/L?similar to 4.35 dex) and model luminosities after the second dredge-up for stars in this mass range, and consider an enhanced carbon burning rate as a possible solution. In conclusion, SN 2009md is a faint SN arising from the collapse of a progenitor close to the lower mass limit for core collapse. This is now the third discovery of a low-mass progenitor star producing a low-energy explosion and low 56Ni ejected mass, which indicates that such events arise from the lowest end of the mass range that produces a core-collapse SN (78 M?).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SN 2009ku, discovered by Pan-STARRS-1, is a Type Ia supernova (SN Ia), and a member of the distinct SN 2002cx-like class of SNe Ia. Its light curves are similar to the prototypical SN 2002cx, but are slightly broader and have a later rise to maximum in g. SN 2009ku is brighter (similar to 0.6 mag) than other SN 2002cx-like objects, peaking at M-V = -18.4 mag, which is still significantly fainter than typical SNe Ia. SN 2009ku, which had an ejecta velocity of similar to 2000 km s(-1) at 18 days after maximum brightness, is spectroscopically most similar to SN 2008ha, which also had extremely low-velocity ejecta. However, SN 2008ha had an exceedingly low luminosity, peaking at M-V = -14.2 mag, similar to 4 mag fainter than SN 2009ku. The contrast of high luminosity and low ejecta velocity for SN 2009ku is contrary to an emerging trend seen for the SN 2002cx class. SN 2009ku is a counterexample of a previously held belief that the class was more homogeneous than typical SNe Ia, indicating that the class has a diverse progenitor population and/or complicated explosion physics. As the first example of a member of this class of objects from the new generation of transient surveys, SN 2009ku is an indication of the potential for these surveys to find rare and interesting objects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present new optical and near-infrared (NIR) photometry and spectroscopy of the Type IIP supernova (SN), SN 2004et. In combination with already published data, this provides one of the most complete studies of optical and NIR data for any Type IIP SN from just after explosion to +500 d. The contribution of the NIR flux to the bolometric light curve is estimated to increase from 15 per cent at explosion to around 50 per cent at the end of the plateau and then declines to 40 per cent at 300 d. SN 2004et is one of the most luminous IIP SNe which has been well studied and characterized, and with a luminosity of log L = 42.3 erg s-1 and a 56Ni mass of 0.06 +/- 0.04 M-circle dot, it is two times brighter than SN 1999em. We provide parametrized bolometric corrections as a function of time since explosion for SN 2004et and three other IIP SNe that have extensive optical and NIR data. These can be used as templates for future events in optical and NIR surveys without full wavelength coverage. We compare the physical parameters of SN 2004et with those of other well-studied IIP SNe and find that the kinetic energies span a range of 1050-1051 erg. We compare the ejected masses calculated from hydrodynamic models with the progenitor masses and limits derived from pre-discovery images. Some of the ejected mass estimates are significantly higher than the progenitor mass estimates, with SN 2004et showing perhaps the most serious mass discrepancy. With the current models, it appears difficult to reconcile 100 d plateau lengths and high expansion velocities with the low ejected masses of 5-6 M-circle dot implied from 7-8 M-circle dot progenitors. The nebular phase is studied using very late-time Hubble Space Telescope photometry, along with optical and NIR spectroscopy. The light curve shows a clear flattening at 600 d in the optical and the NIR, which is likely due to the ejecta impacting on circumstellar material. We further show that the [O i] 6300, 6364 A line strengths in the nebular spectra of four Type IIP SNe imply ejected oxygen masses of 0.5-1.5 M-circle dot.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We identify a source coincident with SN 2009kr in Hubble Space Telescope pre-explosion images. The object appears to be a single point source with an intrinsic color V - I = 1.1 +/- 0.25 and M-V = -7.6 +/- 0.6. If this is a single star, it would be a yellow supergiant of log L/L-circle dot similar to 5.1 and a mass of 15(-4)(+5) M-circle dot. The spatial resolution does not allow us yet to definitively determine if the progenitor object is a single star, a binary system, or a compact cluster. We show that the early light curve is similar to a Type IIL SN, but the prominent H alpha P-Cygni profiles and the signature of the end of a recombination phase are reminiscent of a Type IIP. The evolution of the expanding ejecta will play an important role in understanding the progenitor object.