748 resultados para EFFECTIVE IONIC-RADII
Resumo:
We detail an innovative new technique for measuring the two-dimensional (2D) velocity moments (rotation velocity, velocity dispersion and Gauss-Hermite coefficients h(3) and h(4)) of the stellar populations of galaxy haloes using spectra from Keck DEIMOS (Deep Imaging Multi-Object Spectrograph) multi-object spectroscopic observations. The data are used to reconstruct 2D rotation velocity maps. Here we present data for five nearby early-type galaxies to similar to three effective radii. We provide significant insights into the global kinematic structure of these galaxies, and challenge the accepted morphological classification in several cases. We show that between one and three effective radii the velocity dispersion declines very slowly, if at all, in all five galaxies. For the two galaxies with velocity dispersion profiles available from planetary nebulae data we find very good agreement with our stellar profiles. We find a variety of rotation profiles beyond one effective radius, i.e. rotation speed remaining constant, decreasing and increasing with radius. These results are of particular importance to studies which attempt to classify galaxies by their kinematic structure within one effective radius, such as the recent definition of fast- and slow-rotator classes by the Spectrographic Areal Unit for Research on Optical Nebulae project. Our data suggest that the rotator class may change when larger galactocentric radii are probed. This has important implications for dynamical modelling of early-type galaxies. The data from this study are available on-line.
Resumo:
A recent integral-field spectroscopic (IFS) survey, the MASSIVE survey (Ma et al. 2014), observed the 116 most massive (MK < −25.3 mag, stellar mass M∗ > 10^11.6 M⊙) early-type galaxies (ETGs) within 108 Mpc, out to radii as large as 40 kpc, that correspond to ∼ 2 − 3 effective radii (Re). One of the major findings of the MASSIVE survey is that the galaxy sample is split nearly equally among three groups showing three different velocity dispersion profiles σ(R) outer of a radius ∼ 5 kpc (falling, flat and rising with radius). The purpose of this thesis is to model the kinematic profiles of six ETGs included in the MASSIVE survey and representative of the three observed σ(R) shapes, with the aim of investigating their dynamical structure. Models for the chosen galaxies are built using the numerical code JASMINE (Posacki, Pellegrini, and Ciotti 2013). The code produces models of axisymmetric galaxies, based on the solution of the Jeans equations for a multicomponent gravitational potential (supermassive black hole, stars and dark matter halo). With the aim of having a good agreement between the kinematics obtained from the Jeans equations, and the observed σ and rotation velocity V of MASSIVE (Veale et al. 2016, 2018), I derived constraints on the dark matter distribution and orbital anisotropy. This work suggests a trend of the dark matter amount and distribution with the shape of the velocity dispersion profiles in the outer regions: the models of galaxies with flat or rising velocity dispersion profiles show higher dark matter fractions fDM both within 1 Re and 5 Re. Orbital anisotropy alone cannot account for the different observed trends of σ(R) and has a minor effect compared to variations of the mass profile. Galaxies with similar stellar mass M∗ that show different velocity dispersion profiles (from falling to rising) are successfully modelled with a variation of the halo mass Mh.
Resumo:
We propose a statistical model to account for the gel-fluid anomalous phase transitions in charged bilayer- or lamellae-forming ionic lipids. The model Hamiltonian comprises effective attractive interactions to describe neutral-lipid membranes as well as the effect of electrostatic repulsions of the discrete ionic charges on the lipid headgroups. The latter can be counterion dissociated (charged) or counterion associated (neutral), while the lipid acyl chains may be in gel (low-temperature or high-lateral-pressure) or fluid (high-temperature or low-lateral-pressure) states. The system is modeled as a lattice gas with two distinct particle types-each one associated, respectively, with the polar-headgroup and the acyl-chain states-which can be mapped onto an Ashkin-Teller model with the inclusion of cubic terms. The model displays a rich thermodynamic behavior in terms of the chemical potential of counterions (related to added salt concentration) and lateral pressure. In particular, we show the existence of semidissociated thermodynamic phases related to the onset of charge order in the system. This type of order stems from spatially ordered counterion association to the lipid headgroups, in which charged and neutral lipids alternate in a checkerboard-like order. Within the mean-field approximation, we predict that the acyl-chain order-disorder transition is discontinuous, with the first-order line ending at a critical point, as in the neutral case. Moreover, the charge order gives rise to continuous transitions, with the associated second-order lines joining the aforementioned first-order line at critical end points. We explore the thermodynamic behavior of some physical quantities, like the specific heat at constant lateral pressure and the degree of ionization, associated with the fraction of charged lipid headgroups.
Resumo:
Purpose, An integrated ionic mobility-pore model for epidermal iontophoresis is developed from theoretical considerations using both the free volume and pore restriction forms of the model for a range of solute radii (r(j)) approaching the pore radii (r(p)) as well as approximation of the pore restriction form for r(j)/r(p) < 0.4. In this model, we defined the determinants for iontophoresis as solute size (defined by MV, MW or radius), solute mobility, solute shape, solute charge, the Debye layer thickness, total current applied, solute concentration, fraction ionized, presence of extraneous ions (defined by solvent conductivity), epidermal permselectivity, partitioning rates to account for interaction of unionized and ionized lipophilic solutes with the wall of the pore and electroosmosis. Methods, The ionic mobility-pore model was developed from theoretical considerations to include each of the determinants of iontophoretic transport. The model was then used to reexamine iontophoretic flux conductivity and iontophoretic flux-fraction ionized literature data on the determinants of iontophoretic flux. Results. The ionic mobility-pore model was found to be consistent with existing experimental data and determinants defining iontophoretic transport. However, the predicted effects of solute size on iontophoresis are more consistent with the pore-restriction than free volume form of the model. A reanalysis of iontophoretic flux-conductivity data confirmed the model's prediction that, in the absence of significant electroosmosis, the reciprocal of flux is linearly related to either donor or receptor solution conductivity. Significant interaction with the pore walls, as described by the model, accounted for the reported pH dependence of the iontophoretic transport for a range of ionizable solutes. Conclusions. The ionic mobility-pore iontophoretic model developed enables a range of determinants of iontophoresis to be described in a single unifying equation which recognises a range of determinants of iontophoretic flux.
Resumo:
The concept of crystallographic index termed the effective index is suggested and applied to the design of ceria (CeO2)-based electrolytes to maximize oxide ionic conductivity. The suggested index considers the fluorite structure, and combines the expected oxygen vacancy level with the ionic radius mismatch between host and dopant cations. Using this approach, oxide ionic conductivity of Sm- or La-doped CeO2-based system has been optimized and tested under operating conditions of a solid oxide fuel cell. In the observation of microstructure in atomic scale, both Sm-doped CeO2 and La-doped CeO2 electrolytes had large micro-domains over 10 nm in the lattice. On the other hand, Sm or La and alkaline earth co-doped CeO2-based electrolytes with high effective index had small micro-domains around 1-3 nm in the microstructure. The large micro-domain would prevent oxide ion from passing through the lattice. Therefore, it is concluded that the improvement of ionic conductivity is reflected in changes of microstructure in atomic scale. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The main objective of this thesis was the development of polymeric structures from the dissolution of FucoPol, a bacterial exopolysaccharide (EPS), in a biocompatible ionic liquid, choline acetate. The FucoPol was produced by the bacteria Enterobacter A47 using glycerol as carbon source at controlled temperature and pH (30ºC and 7, respectively). At the end of 3 days it was produced 7 g/L of FucoPol. The net yield of Fucopol in glycerol (YP/S) was 0.22 g/g and the maximum productivity 2.37 g/L.d This polymer was characterized about its composition in sugars and acyl groups (by High-Performance Liquid Chromatography - HPLC), containing fucose (35 % mol), galactose (21 % mol), glucose (29 % mol), rhamnose (3% mol) and glucuronic acid (12% mol) as well as acetate (14.28 % mol), pyruvate (2.15 % mol) and succinate (1.80 % mol). Its content of water and ash was 15% p/p and 2% p/p, respectively, and the chemical bonds (determined by Infrared Spectroscopy - FT-IR) are consistent to the literature reports. However, due to limitations in Differential Scanning Calorimetry (DSC) equipment it was not possible to determine the glass transition temperature. In turn, the ionic liquid showed the typical behavior of a Newtonian fluid, glass transition temperature (determined by DSC) -98.03ºC and density 1.1031 g/cm3. The study of chemical bonds by FT-IR showed that amount of water (8.80%) influenced the visualization of the bands predicted to in view of their chemical structure. After the dissolution of the FucoPol in the ionic liquid at different temperatures (50, 60, 80 and 100 ° C) it was promoted the removal of this by the phase inversion method using deionized water as a solvent, followed by drying in an oven at 70 ° C. The mixtures before and after the phase inversion method were characterized through the studies mentioned above. In order to explore possible application field’s biocompatibility assays and collage on balsa wood tests were performed. It was found that the process of washing with water by the phase inversion method was not totally effective in removing the biocompatible ionic liquid, since all FucoPol – IL mixtures still contained ionic liquid in their composition as can be seen by the DSC results and FT-IR. In addition, washing the mixtures with water significantly altered the composition of FucoPol. However, these mixtures, that developed a viscous behavior typical of a non-Newtonian fluid (shear-thinning), have the potential to be applied in the biomedical field as well as biological glues.
Resumo:
New and robust methodologies have been designed for palladiumcatalyzed cross-coupling reactions involving a library of novel tertiary phosphine ligands incorporating a phospha-adamantane framework. The secondary phosphine, l,3,5,7-tetramethyl-2,4,8-trioxa-6-phospha-adamantane was converted into a small library of tertiary phosphine derivatives and the ability of these tertiary phosphaadamantanes to act as effective ligands in the palladium-catalyzed amination reaction and p-alkyl-Suzuki cross-coupling was examined. l,3,5,7-Tetramethyl-6- phenyl-2,4,8-trioxa-6-phosphaadamantane (PA-Ph) used in combination with Pd2(dba)3 CHCI3 facilitated the reaction of an array of aryl iodides, bromides and chlorides with a variety secondary and primary amines to give tertiary and secondary amines respectively in good to excellent yields. 8-(2,4-Dimethoxyphenyl)- l,3,5,7-tetramethyl-2,4,6-trioxa-8-phospha-tricyclo[3.3.1.1*3,7*]decane used in combination with Pd(0Ac)2 permitted the reaction of an array of alkyl iodides, and bromides with a variety aryl boronic acids and alkyl 9-BBN compounds in good to excellent yields. Subsequent to this work, the use of phosphorous based ionic liquids, specifically tetradecyltrihexylphosphonium chloride (THPC), in the Heck reaction provided good to excellent yields in the coupling of aryl iodides and bromides with a variety of olefins.
Resumo:
This paper describes the use of pH and calcium ion electrodes for investigating factors affecting the heat stability of UHT milk with added calcium chloride. Calcium chloride was added to raw milk to manipulate ionic calcium and pH to within the range that may be typically encountered in raw milk of different compositions and microbial quality. Addition of only 5 mM calcium chloride was sufficient to induce considerable changes in pH, ionic calcium and ethanol stability and alter its stability to UHT treatment. There was a strong relationship between pH decrease and increase in ionic calcium when pH was reduced, whether by addition of calcium chloride or by acidification. Calcium chloride addition was found to increase sediment formation in UHT treated milk. However, sediment could be reduced by addition of stabilizers. Those most effective were ones which decreased ionic calcium and increased pH, such as trisodium citrate and disodium hydrogen phosphate. Sediment formation following UHT treatment was only slight for milk samples whose ethanol stability was greater than 80%.
Resumo:
The viscosity of ionic liquids based on quaternary ammonium cations is reduced when one of the alkyl chains is replaced by an alkoxy chain (Zhou et al. Chem. Eur. J. 2005, 11, 752.). A microscopic picture of the role played by the ether function in decreasing the viscosity of quaternary ammonium ionic liquids is provided here by molecular dynamics (MD) simulations. A model for the ionic liquid N-ethyl-N,N-dimethyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide, MOENM(2)E TFSI, is compared to the tetraalky-lammonium counterpart. The alkoxy derivative has lower viscosity, higher ionic diffusion coefficients, and higher conductivity than the tetraalkyl system at the same density and temperature. A clear signature of the ether function on the liquid structure is observed in cation-cation correlations, but not in anion-anion or anion-cation correlations. In both the alkyl and the alkoxy ionic liquids, there is aggregation of long chains of neighboring cations within micelle-like structures. The MD simulations indicate that the less effective assembly between the more flexible alkoxy chains, in comparison to alkyl chains, is the structural reason for higher ionic mobility in MOENM(2)E TFSI.
Resumo:
The aim of this study was to develop a fast capillary electrophoresis method for the determination of benzoate and sorbate ions in commercial beverages. In the method development the pH and constituents of the background electrolyte were selected using the effective mobility versus pH curves. As the high resolution obtained experimentally for sorbate and benzoate in the studies presented in the literature is not in agreement with that expected from the ionic mobility values published, a procedure to determine these values was carried out. The salicylate ion was used as the internal standard. The background electrolyte was composed of 25 mmol L(-1) tris(hydroxymethyl)aminomethane and 12.5 mmol L(-1) 2-hydroxyisobutyric acid, atpH 8.1.Separation was conducted in a fused-silica capillary(32 cm total length and 8.5 cm effective length, 50 mu m I.D.), with short-end injection configuration and direct UV detection at 200 nm for benzoate and salicylate and 254 nm for sorbate ions. The run time was only 28 s. A few figures of merit of the proposed method include: good linearity (R(2) > 0.999), limit of detection of 0.9 and 0.3 mg L(-1) for benzoate and sorbate, respectively, inter-day precision better than 2.7% (n =9) and recovery in the range 97.9-105%. Beverage samples were prepared by simple dilution with deionized water (1:11, v/v). Concentrations in the range of 197-401 mg L(-1) for benzoate and 28-144 mg L(-1) for sorbate were found in soft drinks and tea. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The giant extracellular hemoglobin of Glossoscolex paulistus (HbGp) is constituted by approximately 144 subunits containing heme groups with molecular masses in the range of 16-19 kDa forming a monomer (d) and a trimer (abc), and around 36 non-heme structures, named linkers (L). Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF-MS) analysis was performed recently, to obtain directly information on the molecular masses of the different subunits from HbGp in the oxy-form. This technique demonstrated structural similarity between HbGp and the widely studied hemoglobin of Lumbricus terrestris (HbLt). Indeed, two major isoforms (d(1) and d(2)) of identical proportions with masses of 16,355+/-25 and 16,428+/-24 Da, respectively, and two minor isoforms (d(3) and d(4)) with masses around 16.6 kDa were detected for monomer d of HbGp. In the present work, the effects of anionic sodium dodecyl sulfate (SDS) and cationic cethyltrimethyl ammonium chloride (CTAC) on the oligomeric structure of HbGp have been studied by MALDI-TOF-MS in order to evaluate the interaction between ionic surfactants and HbGp. The data obtained with this technique show an effective interaction of cationic surfactant CTAC with the two isoforms of monomer d, d(1) and d(2), both in the whole protein as well as in the pure isolated monomer. The results show that up to 10 molecules of CTAC are bound to each isoform of the monomer. Differently, the mass spectra obtained for SDS-HbGp system showed that the addition of the anionic surfactant SDS does not originate any mass increment of the monomeric subunits, indicating that SDS-HbGp interaction is, probably, significantly less effective as compared to CTAC-HbGp one. The acid pI of the protein around 5.5 is, probably, responsible for this behavior. The results of this work suggest also some interaction of both surfactants with linker chains as well as with trimers, as judged from observed mass increments. Our data are consistent with a recent spectroscopic study showing a strong interaction between CTAC and HbGp at physiological pH [P.S.Santiago, et al, Biochim. Biophys. Acta. 1770 (2007) 506-517.]. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This thesis is concerned with the use of ionic and neutral hydrogels in dermal and ocular applications with particular reference to controlled release applications. The work consists of three interconnected themes.The first area of study is the use of skin adhesive bioelectrode hydrogels as ground plate electrodes for ophthalmic iontophoresis applications. The work provides a basis of understanding the relative contributions made by ionic monomers (such as sodium s-(acrylamide)-2-methyl propane sulphonate and acrylic acid-bis-(3-sulfopropyl-ester, potassium salt) and neutral monomers (such as acryloymorpholine, N,N-dimethylacrylamide and N-vinyl pyrrolidone) to adhesion, rheology and impedance of bioelectrode gels. The general advantage of neutral monomers, which have been used to successfully replace ionic monomers, is that they enable more effective control of independent anion and cation species (for example potassium chloride and sodium chloride) unlike ionic monomers where polymerisation produces an immobile polyanion thus limiting cation mobility. Secondly, release from a completely neutral hydrogel under the influence of mechanical shaking was studied for the case of crosslinked polyvinyl alcohol (PVA) containing low concentration of linear soluble PVA in a contact lens application. The soluble PVA was observed to be eluting by reptation from the lens matrix due to the mechanical action of the eyelid. This process was studied in an in vitro model, which in this research was used as a basis for developing a lens made with enhanced release polymer. The third area of work is related to the factors that control drug release (in particular non-steroidal anti-inflammatory drugs) from a hydrogel matrix. This links both electrotherapy applications, such as transcutaneous electrical nerve stimulation, in which the passive diffusion from the gel could be used in conjunction with enhanced transmission across the dermal surface with passive diffusion from a contact lens matrix and the development of therapeutic contact lenses.
Resumo:
The influence of ionic strength and of the chemical nature of cations on the protein-protein interactions in ovalbumin solution was studied using small-angle X-ray and neutron scattering (SAXS/SANS). The globular protein ovalbumin is found in dimeric form in solutions as suggested by SANS/SAXS experiments. Due to the negative charge of the proteins at neutral pH, the protein-protein interactions without any salt addition are dominated by electrostatic repulsion. A structure factor related to screened Coulombic interactions together with an ellipsoid form factor was used to fit the scattering intensity. A monovalent salt (NaCl) and a trivalent salt (YCl3) were used to study the effect of the chemical nature of cations on the interaction in protein solutions. Upon addition of NaCl, with ionic strength below that of physiological conditions (150 mM), the effective interactions are still dominated by the surface charge of the proteins and the scattering data can be understood using the same model. When yttrium chloride was used, a reentrant condensation behavior, i.e., aggregation and subsequent redissolution of proteins with increasing salt concentration, was observed. SAXS measurements reveal a transition from effective repulsion to attraction with increasing salt concentration. The solutions in the reentrant regime become unstable after long times (several days). The results are discussed and compared with those from bovine serum albumin (BSA) in solutions.
Resumo:
We have studied a series of samples of bovine serum albumin (BSA) solutions with protein concentration, c, ranging from 2 to 500 mg/mL and ionic strength, I, from 0 to 2 M by small-angle X-ray scattering (SAXS). The scattering intensity distribution was compared to simulations using an oblate ellipsoid form factor with radii of 17 x 42 x 42 A, combined with either a screened Coulomb, repulsive structure factor, S-SC(q), or an attractive square-well structure factor, S-SW(q). At pH = 7, BSA is negatively charged. At low ionic strength, I <0.3 M, the total interaction exhibits a decrease of the repulsive interaction when compared to the salt-free solution, as the net surface charge is screened, and the data can be fitted by assuming an ellipsoid form factor and screened Coulomb interaction. At moderate ionic strength (0.3-0.5 M), the interaction is rather weak, and a hard-sphere structure factor has been used to simulate the data with a higher volume fraction. Upon further increase of the ionic strength (I >= 1.0 M), the overall interaction potential was dominated by an additional attractive potential, and the data could be successfully fitted by an ellipsoid form factor and a square-well potential model. The fit parameters, well depth and well width, indicate that the attractive potential caused by a high salt concentration is weak and long-ranged. Although the long-range, attractive potential dominated the protein interaction, no gelation or precipitation was observed in any of the samples. This is explained by the increase of a short-range, repulsive interaction between protein molecules by forming a hydration layer with increasing salt concentration. The competition between long-range, attractive and short-range, repulsive interactions accounted for the stability of concentrated BSA solution at high ionic strength.