964 resultados para EEG, Epilepsy, pre-ictal, entropy, bispectrum, bicoherence
Resumo:
Background: The aim of the present work was to investigate the involvement of the mu(1)-endogenous opioid peptide receptor-mediated system in post-ictal antinociception. Methods: Antinociceptive responses were determined by the tail-flick test after pre-treatment with the selective mu(1)-opioid receptor antagonist naloxonazine, peripherally or centrally administered at different doses. Results: Peripheral subchronic (24 h) pre-treatment with naloxonazine antagonised the antinociception elicited by tonic-clonic seizures. Acute (10 min) pre-treatment, however, did not have the same effect. In addition, microinjections of naloxonazine into the central, dorsal cortical and external cortical nuclei of the inferior colliculus antagonised tonic-clonic seizure-induced antinociception. Neither acute (10-min) peripheral pre-treatment with naloxonazine nor subchronic intramesencephalic blockade of mu(1)-opioid receptors resulted in consistent statistically significant differences in the severity of tonic-clonic seizures shown by Racine's index (1972), although the intracollicular specific antagonism of mu(1)-opioid receptor decreased the duration of seizures. Conclusion: mu(1)-Opioid receptors and the inferior colliculus have been implicated in several endogenous opioid peptide-mediated responses such as antinociception and convulsion. The present findings suggest the involvement of mu(1)-opiate receptors of central and pericentral nuclei of the inferior colliculus in the modulation of tonic-clonic seizures and in the organisation of post-ictal antinociception. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: Refractory frontal lobe epilepsy (FLE) remains one of the most challenging surgically remediable epilepsy syndromes. Nevertheless, definition of independent predictors and predictive models of postsurgical seizure outcome remains poorly explored in FLE. Methods: We retrospectively analyzed data from 70 consecutive patients with refractory FLE submitted to surgical treatment at our center from July 1994 to December 2006. Univariate results were submitted to logistic regression models and Cox proportional hazards regression to identify isolated risk factors for poor surgical results and to construct predictive models for surgical outcome in FLE. Results: From 70 patients submitted to surgery, 45 patients (64%) had favorable outcome and 37 (47%) became seizure free. Isolated risk factors for poor surgical outcome are expressed in hazard ratio (H.R.) and were time of epilepsy (H.R.=4.2; 95% C.I.=.1.5-11.7; p=0.006), ictal EEG recruiting rhythm (H.R. = 2.9; 95% C.I. = 1.1-7.7; p=0.033); normal MRI (H.R. = 4.8; 95% C.I. = 1.4-16.6; p = 0.012), and MRI with lesion involving eloquent cortex (H.R. = 3.8; 95% C.I. = 1.2-12.0; p = 0.021). Based on these variables and using a logistic regression model we constructed a model that correctly predicted long-term surgical outcome in up to 80% of patients. Conclusion: Among independent risk factors for postsurgical seizure outcome, epilepsy duration is a potentially modifiable factor that could impact surgical outcome in FLE. Early diagnosis, presence of an MRI lesion not involving eloquent cortex, and ictal EEG without recruited rhythm independently predicted favorable outcome in this series. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Introduction: Nocturnal frontal lobe epilepsy (NFLE) is a distinct syndrome of partial epilepsy whose clinical features comprise a spectrum of paroxysmal motor manifestations of variable duration and complexity, arising from sleep. Cardiovascular changes during NFLE seizures have previously been observed, however the extent of these modifications and their relationship with seizure onset has not been analyzed in detail. Objective: Aim of present study is to evaluate NFLE seizure related changes in heart rate (HR) and in sympathetic/parasympathetic balance through wavelet analysis of HR variability (HRV). Methods: We evaluated the whole night digitally recorded video-polysomnography (VPSG) of 9 patients diagnosed with NFLE with no history of cardiac disorders and normal cardiac examinations. Events with features of NFLE seizures were selected independently by three examiners and included in the study only if a consensus was reached. Heart rate was evaluated by measuring the interval between two consecutive R-waves of QRS complexes (RRi). RRi series were digitally calculated for a period of 20 minutes, including the seizures and resampled at 10 Hz using cubic spline interpolation. A multiresolution analysis was performed (Daubechies-16 form), and the squared level specific amplitude coefficients were summed across appropriate decomposition levels in order to compute total band powers in bands of interest (LF: 0.039062 - 0.156248, HF: 0.156248 - 0.624992). A general linear model was then applied to estimate changes in RRi, LF and HF powers during three different period (Basal) (30 sec, at least 30 sec before seizure onset, during which no movements occurred and autonomic conditions resulted stationary); pre-seizure period (preSP) (10 sec preceding seizure onset) and seizure period (SP) corresponding to the clinical manifestations. For one of the patients (patient 9) three seizures associated with ictal asystole were recorded, hence he was treated separately. Results: Group analysis performed on 8 patients (41 seizures) showed that RRi remained unchanged during the preSP, while a significant tachycardia was observed in the SP. A significant increase in the LF component was instead observed during both the preSP and the SP (p<0.001) while HF component decreased only in the SP (p<0.001). For patient 9 during the preSP and in the first part of SP a significant tachycardia was observed associated with an increased sympathetic activity (increased LF absolute values and LF%). In the second part of the SP a progressive decrease in HR that gradually exceeded basal values occurred before IA. Bradycardia was associated with an increase in parasympathetic activity (increased HF absolute values and HF%) contrasted by a further increase in LF until the occurrence of IA. Conclusions: These data suggest that changes in autonomic balance toward a sympathetic prevalence always preceded clinical seizure onset in NFLE, even when HR changes were not yet evident, confirming that wavelet analysis is a sensitive technique to detect sudden variations of autonomic balance occurring during transient phenomena. Finally we demonstrated that epileptic asystole is associated with a parasympathetic hypertonus counteracted by a marked sympathetic activation.
Resumo:
Background: l’epilessia è una malattia cerebrale che colpisce oggigiorno circa l’1% della popolazione mondiale e causa, a chi ne soffre, convulsioni ricorrenti e improvvise che danneggiano la vita quotidiana del paziente. Le convulsioni sono degli eventi che bloccano istantaneamente la normale attività cerebrale; inoltre differiscono tra i pazienti e, perciò, non esiste un trattamento comune generalizzato. Solitamente, medici neurologi somministrano farmaci, e, in rari casi, l’epilessia è trattata con operazioni neurochirurgiche. Tuttavia, le operazioni hanno effetti positivi nel ridurre le crisi, ma raramente riescono a eliminarle del tutto. Negli ultimi anni, nel campo della ricerca scientifica è stato provato che il segnale EEG contiene informazioni utili per diagnosticare l'arrivo di un attacco epilettico. Inoltre, diversi algoritmi automatici sono stati sviluppati per rilevare automaticamente le crisi epilettiche. Scopo: lo scopo finale di questa ricerca è l'applicabilità e l'affidabilità di un dispositivo automatico portatile in grado di rilevare le convulsioni e utilizzabile come sistema di monitoraggio. L’analisi condotta in questo progetto, è eseguita con tecniche di misure classiche e avanzate, in modo tale da provare tecnicamente l’affidabilità di un tale sistema. La comparazione è stata eseguita sui segnali elettroencefalografici utilizzando due diversi sistemi di acquisizione EEG: il metodo standard utilizzato nelle cliniche e il nuovo dispositivo portatile. Metodi: è necessaria una solida validazione dei segnali EEG registrati con il nuovo dispositivo. I segnali saranno trattati con tecniche classiche e avanzate. Dopo le operazioni di pulizia e allineamento, verrà utilizzato un nuovo metodo di rappresentazione e confronto di segnali : Bump model. In questa tesi il metodo citato verrà ampiamente descritto, testato, validato e adattato alle esigenze del progetto. Questo modello è definito come un approccio economico per la mappatura spazio-frequenziale di wavelet; in particolare, saranno presenti solo gli eventi con un’alta quantità di energia. Risultati: il modello Bump è stato implementato come toolbox su MATLAB dallo sviluppatore F. Vialatte, e migliorato dall’Autore per l’utilizzo di registrazioni EEG da sistemi diversi. Il metodo è validato con segnali artificiali al fine di garantire l’affidabilità, inoltre, è utilizzato su segnali EEG processati e allineati, che contengono eventi epilettici. Questo serve per rilevare la somiglianza dei due sistemi di acquisizione. Conclusioni: i risultati visivi garantiscono la somiglianza tra i due sistemi, questa differenza la si può notare specialmente comparando i grafici di attività background EEG e quelli di artefatti o eventi epilettici. Bump model è uno strumento affidabile per questa applicazione, e potrebbe essere utilizzato anche per lavori futuri (ad esempio utilizzare il metodo di Sincronicità Eventi Stocas- tici SES) o differenti applicazioni, così come le informazioni estratte dai Bump model potrebbero servire come input per misure di sincronicità, dalle quali estrarre utili risultati.
Resumo:
Epileptic seizures typically reveal a high degree of stereotypy, that is, for an individual patient they are characterized by an ordered and predictable sequence of symptoms and signs with typically little variability. Stereotypy implies that ictal neuronal dynamics might have deterministic characteristics, presumably most pronounced in the ictogenic parts of the brain, which may provide diagnostically and therapeutically important information. Therefore the goal of our study was to search for indications of determinism in periictal intracranial electroencephalography (EEG) studies recorded from patients with pharmacoresistent epilepsy.
Resumo:
To derive tests for randomness, nonlinear-independence, and stationarity, we combine surrogates with a nonlinear prediction error, a nonlinear interdependence measure, and linear variability measures, respectively. We apply these tests to intracranial electroencephalographic recordings (EEG) from patients suffering from pharmacoresistant focal-onset epilepsy. These recordings had been performed prior to and independent from our study as part of the epilepsy diagnostics. The clinical purpose of these recordings was to delineate the brain areas to be surgically removed in each individual patient in order to achieve seizure control. This allowed us to define two distinct sets of signals: One set of signals recorded from brain areas where the first ictal EEG signal changes were detected as judged by expert visual inspection ("focal signals") and one set of signals recorded from brain areas that were not involved at seizure onset ("nonfocal signals"). We find more rejections for both the randomness and the nonlinear-independence test for focal versus nonfocal signals. In contrast more rejections of the stationarity test are found for nonfocal signals. Furthermore, while for nonfocal signals the rejection of the stationarity test increases the rejection probability of the randomness and nonlinear-independence test substantially, we find a much weaker influence for the focal signals. In consequence, the contrast between the focal and nonfocal signals obtained from the randomness and nonlinear-independence test is further enhanced when we exclude signals for which the stationarity test is rejected. To study the dependence between the randomness and nonlinear-independence test we include only focal signals for which the stationarity test is not rejected. We show that the rejection of these two tests correlates across signals. The rejection of either test is, however, neither necessary nor sufficient for the rejection of the other test. Thus, our results suggest that EEG signals from epileptogenic brain areas are less random, more nonlinear-dependent, and more stationary compared to signals recorded from nonepileptogenic brain areas. We provide the data, source code, and detailed results in the public domain.
Resumo:
While voxel-based 3-D MRI analysis methods as well as assessment of subtracted ictal versus interictal perfusion studies (SISCOM) have proven their potential in the detection of lesions in focal epilepsy, a combined approach has not yet been reported. The present study investigates if individual automated voxel-based 3-D MRI analyses combined with SISCOM studies contribute to an enhanced detection of mesiotemporal epileptogenic foci. Seven consecutive patients with refractory complex partial epilepsy were prospectively evaluated by SISCOM and voxel-based 3-D MRI analysis. The functional perfusion maps and voxel-based statistical maps were coregistered in 3-D space. In five patients with temporal lobe epilepsy (TLE), the area of ictal hyperperfusion and corresponding structural abnormalities detected by 3-D MRI analysis were identified within the same temporal lobe. In two patients, additional structural and functional abnormalities were detected beyond the mesial temporal lobe. Five patients with TLE underwent epileptic surgery with favourable postoperative outcome (Engel class Ia and Ib) after 3-5 years of follow-up, while two patients remained on conservative treatment. In summary, multimodal assessment of structural abnormalities by voxel-based analysis and SISCOM may contribute to advanced observer-independent preoperative assessment of seizure origin.
Resumo:
Pre-operative assessment and surgical management of patients with non-lesional extratemporal epilepsy remain challenging due to a lack of precise localisation of the epileptic zone. In most cases, invasive recording with depth or subdural electrodes is required. Here, we describe the case of 6.5-year-old girl who underwent comprehensive non-invasive phase I video-EEG investigation for drug-resistant epilepsy, including electric source and nuclear imaging. Left operculo-insular epilepsy was diagnosed. Post-operatively, she developed aphasia which resolved within one year, corroborating the notion of enhanced language plasticity in children. The patient remained seizure-free for more than three years.
Resumo:
BACKGROUND: Accurate projection of implanted subdural electrode contacts in presurgical evaluation of pharmacoresistant epilepsy cases by invasive EEG is highly relevant. Linear fusion of CT and MRI images may display the contacts in the wrong position due to brain shift effects. OBJECTIVE: A retrospective study in five patients with pharmacoresistant epilepsy was performed to evaluate whether an elastic image fusion algorithm can provide a more accurate projection of the electrode contacts on the pre-implantation MRI as compared to linear fusion. METHODS: An automated elastic image fusion algorithm (AEF), a guided elastic image fusion algorithm (GEF), and a standard linear fusion algorithm (LF) were used on preoperative MRI and post-implantation CT scans. Vertical correction of virtual contact positions, total virtual contact shift, corrections of midline shift and brain shifts due to pneumencephalus were measured. RESULTS: Both AEF and GEF worked well with all 5 cases. An average midline shift of 1.7mm (SD 1.25) was corrected to 0.4mm (SD 0.8) after AEF and to 0.0mm (SD 0) after GEF. Median virtual distances between contacts and cortical surface were corrected by a significant amount, from 2.3mm after LF to 0.0mm after AEF and GEF (p<.001). Mean total relative corrections of 3.1 mm (SD 1.85) after AEF and 3.0mm (SD 1.77) after GEF were achieved. The tested version of GEF did not achieve a satisfying virtual correction of pneumencephalus. CONCLUSION: The technique provided a clear improvement in fusion of pre- and post-implantation scans, although the accuracy is difficult to evaluate.