164 resultados para EBSD


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evolution of microstructure and texture during deformation of two-phase (alpha + beta) brass was studied for different initial microstructure and texture. The deformation processing involved unidirectional and multi-step cross-rolling. The bulk textures were determined by measuring the pole figures and calculating the orientation distribution function ODF for both alpha (fcc) and beta (bcc) phases, while the microstructure and other microstructural parameters were measured through optical microscopy and scanning electron microscopy with electron back scatter diffraction (SEM-EBSD). Results indicate that textures developed after unidirectional rolling and multi-step cross-rolling are significantly different. The variation in initial texture had a pronounced effect on the development of texture in the alpha phase during subsequent deformation. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grain growth kinetics was studied for commercially pure magnesium subjected to equal channel angular extrusion (ECAE). The specimens were ECAE processed upto 4 passes at 523 K following all the three important routes, namely A, 13, and C. Texture and microstructures of the samples were studied using Electron Back Scattered Diffraction (EBSD) technique in a Field Emission Gun Scanning Electron Microscope (FEG-SEM). It was observed that the grain size significantly reduces after ECAE. ECAE process produces a slightly rotated B and C-2 fiber. Static annealing leads to normal grain growth with unimodal distribution of grains through out the temperature range. Average activation energy for grain growth in the temperature range studied is found to be less than the activation energy for lattice diffusion and grain boundary diffusion of magnesium. No significant change in texture during isochronal annealing for 1 hour i.e., the predominant deformation texture remains same.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Addition of boron in small quantities to various titanium alloys have shown significant improvement in mechanical behavior of materials. In the present study, electron back-scatter diffraction (EBSD) techniques have been applied to investigate the deformation microstructure evolution in boron modified two-phase titanium alloy Ti-6Al-4V. The alloy was hot compressed at 750 degrees C up to 50% height reduction at two different strain rates (10(-3) s(-1) and 1 s(-1)). The EBSD analyses indicated significant differences in deformed microstructure of the base alloy and the alloy containing boron. A strong subgrain formation tendency was observed along with inhomogeneous distribution of dislocations inside large a colonies of Ti64. In contrast, a colonies were relatively strain free for Ti64 + B, with more uniform dislocation density distribution. The observed difference is attributed to microstructural modifications viz, grain size refinement and presence of TiB particles at grain boundary produced due to boron addition. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evolution of microstructure and texture during extrusion of pure magnesium and its single phase alloy AM30 has been studied experimentally as well as by crystal plasticity simulation. Microstructure and micro-texture were characterized by electron back scattered diffraction (EBSD), bulk-texture was measured using X-ray diffraction and deformation texture simulations were carried out using visco-plastic self consistent (VPSC) model. In spite of clear indications of the occurrence of dynamic recrystallization (DRX), simulations were able to reproduce the experimental textures successfully. This was attributed to the fact that the textures were c-type fibers with their axis of rotation parallel to the c-axis and DRX leads to simply rotate the texture around the c-axis. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evolution of deformation texture in commercially pure titanium with submicron grain size (SMG) was studied using x-ray diffraction (XRD) and electron back scatter diffraction (EBSD) methods. The material was deformed by rolling at room temperature. The deformation mechanism was found to be slip dominated with a pyramidal slip system facilitating plastic deformation. No evidence of tensile or compressive twinning was detected, as generally seen in the case of titanium with conventional microcrystalline grain size. The absence of twinning and the propensity of the pyramidal slip system in the SMG Ti is attributed to the lack of coordinated motion of zonal partial dislocations that leads to twinning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present investigation, a strongly bonded strip of an aluminium-magnesium based alloy AA5086 is successfully produced through accumulative roll bonding (ARB). A maximum of up to eight passes has been used for the purpose. Microstructural characterization using electron backscatter diffraction (EBSD) technique indicates the formation of submicron sized (similar to 200-300 nm) subgrains inside the layered microstructure. The material is strongly textured where individual layers possess typical FCC rolling texture components. More than three times enhancement in 0.2% proof stress (PS) has been obtained after 8 passes due to grain refinement and strain hardening. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evolution of texture and microstructure during recrystallization is studied for two-phase copper alloy (Cu–40Zn) with a variation of the initial texture and microstructure (hot rolled and solution treated) as well as the mode of rolling (deformation path: uni-directional rolling and cross rolling). The results of bulk texture have been supported by micro-texture and microstructure studies carried out using electron back scatter diffraction (EBSD). The initial microstructural condition as well as the mode of rolling has been found to alter the recrystallization texture and microstructure. The uni-directionally rolled samples showed a strong Goss and BR {236}385 component while a weaker texture similar to that of rolling evolved for the cross-rolled samples in the α phase on recrystallization. The recrystallization texture of the β phase was similar to that of the rolling texture with discontinuous 101 α and {111} γ fiber with high intensity at {111}101. For a given microstructure, the cross-rolled samples showed a higher fraction of coincident site lattice Σ3 twin boundaries in the α phase. The higher fraction of Σ3 boundaries is explained on the basis of the higher propensity of growth accidents during annealing of the cross-rolled samples. The present investigation demonstrates that change in strain path, as introduced during cross-rolling, could be a viable tool for grain boundary engineering of low SFE fcc materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report investigations on the texture, corrosion and wear behavior of ultra-fine grained (UFG) Ti-13Nb-Zr alloy, processed by equal channel angular extrusion (ECAE) technique, for biomedical applications. The microstructure obtained was characterized by X-ray line profile analysis, scanning electron microscope (SEM) and electron back scattered diffraction (EBSD). We focus on the corrosion resistance and the fretting behavior, the main considerations for such biomaterials, in simulated body fluid. To this end. potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the UFG alloy in Hanks solution at 37 degrees C. The fretting wear behavior was carried out against bearing steel in the same conditions. The roughness of the samples was also measured to examine the effect of topography on the wear behavior of the samples. Our results showed that the ECAE process increases noticeably the performance of the alloy as orthopedic implant. Although no significant difference was observed in the fretting wear behavior, the corrosion resistance of the UFG alloy was found to be higher than the non-treated material. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accumulative roll bonding of two aluminium alloys, AA2219 and AA5086 was carried out up to 8 passes. During the course of ARB, the deformation inhomogeneity between the two alloy layers results in interfacial instability after the 4th pass, necking of the AA5086 layers after the 6th pass and fracture along the necked regions after the 7th and 8th pass. The EBSD analysis shows deformation bands along the interfaces after 8 passes of ARB. The ARB-processed materials predominantly show characteristic deformation texture components. The weak texture after the 2nd pass results from the combination of a weakly-textured starting AA2219 layer and a strongly-textured starting AA5086 layer. A strong deformation texture forms due to the high imposed strain after a higher number of ARB passes. Subgrain formation and related shear banding induces copper/S components in the case of the small elongated grains, while planar slip leads to the formation of brass component in the large elongated grains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, asymmetric rolling was carried out for incorporating a shear component during the rolling at different temperatures, and was compared with conventional (symmetric) rolling. The microstructures were investigated using electron back-scatter diffraction (EBSD). The strain incorporated was compared with the help of grain orientation spread (GOS). GOS was eventually used as a criterion to partition the microstructure for separating the deformed and the dynamically recrystallized (DRX) grains. The texture of the partitioned DRX grains was shifted by similar to 30 degrees along the c-axis from the deformed grains. The mechanism of dynamic recrystallization (DRX) has been identified as continuous dynamic recovery and recrystallization (CDRR). The partitioned deformed grains for the higher temperature rolled specimens exhibited a texture similar to the room temperature rolled specimen. The asymmetric rolling introduces a shear component which shifts the texture fibre by similar to 5-10 degrees from the conventional rolling texture. This led to an increase in ductility with little compromise on strength. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of strain rate, (epsilon) over dot, and temperature, T, on the tension-compression asymmetry (TCA) in a dilute and wrought Mg alloy, AM30, over a temperature range that covers both twin accommodated deformation (below 250 degrees C in compression) as well as dislocation-mediated plasticity (above 250 degrees C) has been investigated. For this purpose, uniaxial tension and compression tests were conducted at T ranging from 25 to 400 degrees C with (epsilon) over dot varying between 10(-2) and 10 s(-1). In most of the cases, the stress-strain responses in tension and compression are distinctly different; with compression responses `concaving upward,' due to {10 (1) over bar2} tensile twinning at lower plastic strains followed by slip and strain hardening at higher levels of deformation, for T below 250 degrees C. This results in significant levels of TCA at T < 250 degrees C, reducing substantially at high temperatures. At T=150 and 250 degrees C, high (epsilon) over dot leads to high TCA, in particular at T=250 degrees C and (epsilon) over dot=10 s(-1), suggesting that twin-mediated plastic deformation takes precedence at high rates of loading even at sufficiently high T. TCA becomes negligible at T=350 degrees C; however at T=400 degrees C, as (epsilon) over dot increases TCA gets higher. Microscopy of the deformed samples, carried out by using electron back-scattered diffraction (EBSD), suggests that at T > 250 degrees C dynamic recrystallization begins between accompanied by reduction in the twinned fraction that contributes to the decrease of the TCA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hot deformation of pearlitic steel was carried out to examine the overall deformation response to microstructural evolution. To understand the mechanisms operative during hot deformation, compression tests were carried out at various temperatures in the range 400(-)600 degrees C and strain rates in the range 0.001-10 s(-1). The flow curves were analyzed to examine the occurrence of dynamic recrystallization. The evolution of microstructure in hot deformed samples is analysed using EBSD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the effect of hybridizing micro-Ti with nano-SiC particulates on the microstructural and the mechanical behaviour of Mg-5.6Ti composite were investigated. Mg materials containing micron-sized Ti particulates hybridized with different amounts of nano-size SiC particulates were synthesized using the disintegrated melt deposition method followed by hot extrusion. The microstructural and mechanical behaviour of the developed Mg hybrid composites were studied in comparison with Mg-5.6Ti. Microstructural characterization revealed grain refinement attributed to the presence of uniformly distributed micro-Ti particles embedded with nano-SiC particulates. Electron back scattered diffraction (EBSD) analyses of Mg-(5.6Ti + 1.0SiC)(BM) hybrid composite showed relatively more localized recrystallized grains and lesser tensile twin fraction, when compared to Mg-5.6Ti. The evaluation of mechanical properties indicated that the best combination of strength and ductility was observed in the Mg-(5.6Ti + 1.0SiC)(BM) hybrid composites. The superior strength properties of the Mg-(5.6Ti + x-SiC)(BM) hybrid composites when compared to Mg-5.6Ti is attributed to the presence of nano-reinforcements, the uniform distribution of the hybridized particles and the better interfacial bonding between the matrix and the reinforcement particles, achieved by nano-SiC addition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the microstructural evolution and mechanical properties of extruded Mg composites containing micro-Ti particulates hybridized with varying contents of nano-B4C are investigated, and compared with Mg-5.6Ti. Microstructural characterization showed the presence of uniformly distributed micro-Ti particles embedded with nano-B4C particulates that resulted in significant grain refinement. Electron back scattered diffraction (EBSD) analyses of Mg-(5.6Ti + x-B4C)(BM) hybrid composites showed that the addition of hybridized particle resulted in relatively more recrystallized grains, realignment of basal planes and extension of weak basal fibre texture when compared to Mg-5.6Ti. The evaluation of mechanical properties indicated improved strength with ductility retention in Mg-(5.6Ti + x-B4C)(BM) hybrid composites. When compared to Mg-5.6Ti, the superior strength properties of the Mg-(5.6Ti + xB(4)C)(BM) hybrid composites are attributed to the presence of nano-reinforcements, the uniform distribution of the hybridized particles, better interfacial bonding between the matrix and the reinforcement particles and the matrix grain refinement achieved by nano-B4C addition. The ductility enhancement obtained in hybrid composites can be attributed to the fibre texture spread and favourable basal plane orientation achieved due to nano B4C addition. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the effect of nano-B4C addition on the microstructural and the mechanical behavior of pure Mg are investigated. Pure Mg-metal reinforced with different amounts of nano-size B4C particulates were synthesized using the disintegrated melt deposition technique followed by hot extrusion. Microstructural characterization of the developed Mg/x-B4C composites revealed uniform distribution of nano-B4C particulates and significant grain refinement. Electron back scattered diffraction (EBSD) analyses showed presence of relatively more recrystallized grains and absence of fiber texture in Mg/B4C nanocomposites when compared to pure Mg. The evaluation of mechanical properties indicated a significant improvement in tensile properties of the composites. The significant improvement in tensile ductility (similar to 180% increase with respect to pure Mg) is among the highest observed when compared to the pure Mg based nanocomposites existing in the current literature. The superior mechanical properties of the Mg/B4C nanocomposites are attributed to the uniform distribution of the nanoparticles and the tendency for texture randomization (absence of fiber texture) achieved due to the nano-B4C addition. (C) 2013 Elsevier Ltd. All rights reserved.