952 resultados para Dynamic data set visualization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dati climatici ad alta risoluzione sono attualmente molto richiesti essendo indispensabili per la valutazione degli impatti dei cambiamenti climatici alla scala locale in svariati campi d'applicazione. Per aumentare l'offerta di tali dati per il territorio italiano viene presentata in questo studio la realizzazione di un data-set con risoluzione di trenta secondi d'arco, per le temperature massime e minime giornaliere per il Trentino Alto Adige, per il periodo che va dal 1951 al 2014. La metodologia utilizzata per proiettare i dati meteorologici di un set di stazioni su di un grigliato ad alta risoluzione si basa sull'assunzione che la struttura spazio-temporale del campo di una variabile meteorologica su una determinata area possa essere descritta dalla sovrapposizione di due campi:i valori normali relativi e un periodo standard, ovvero la climatologia,e le deviazioni da questi, ovvero le anomalie. La climatologia mensile verrà interpolata sull'intero dominio tramite una regressione lineare pesata della temperatura rispetto alla quota,stimata separatamente per ogni nodo del grigliato,con pesi legati alla topografia del territorio,in modo da attribuire di volta in volta la massima importanza alle stazioni con caratteristiche più simili a quella del punto di griglia considerato. Da questa sarà possibile tramite la sovrapposizione con le anomalie mensili ricostruite sul medesimo grigliato, ottenute mediante un'interpolazione basata su una media pesata,ottenere un grigliato a 30 secondi d'arco, di serie temporali mensili in valori assoluti. Combinando poi l'interpolazione dei rapporti delle anomalie giornaliere relative alla media mensile per un set di stazioni con i campi mensili precedentemente stimati,sarà possibile costruire il data-set a risoluzione giornaliera. Prima di quest'ultima fase sarà necessario effettuare un'operazione di sincronizzazione dei dati giornalieri per assicurarsi che non vi siano sfasamenti nelle serie utilizzate. I risultati confermano l'efficacia nell'utilizzo di tale metodo su regioni orograficamente complesse, sia nel confronto diretto con i casi di studio,nei quali si nota bene la discriminazione spaziale effettuata dal modello, che nella valutazione dell'accuratezza e della precisione dei risultati. I dati ottenuti non sono affetti da errori sistematici,mentre l'errore medio assoluto risulta pari od inferiore ai $2^{\circ}$C, in linea con precedenti studi realizzati su altre aree alpine. Il metodo e i risultati risultano soddisfacenti ma ulteriormente migliorabili, sia tramite un ulteriore ottimizzazione del modello usato, che con un aumento nella qualità dei dati sui quali è stato svolto lo studio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa tesi si presenta la realizzazione di un data-set ad alta risoluzione (30 secondi d'arco) di precipitazioni mensili (per il periodo 1921-2014), per la regione del Trentino-Alto Adige. Esso è basato su una densa rete di stazioni con osservazioni di lunga durata, sottoposte ai necessari controlli di qualità. La tecnica di interpolazione si basa sull'assunzione che la configurazione spazio-temporale del campo di una variabile meteorologica su una certa area possa essere descritta con la sovrapposizione di due campi: i valori normali relativi a un periodo standard (1961-1990), ossia le climatologie, e le deviazioni da questi, ossia le anomalie. Le due componenti possono venire ricostruite tramite metodologie diverse e si possono basare su data-set indipendenti. Per le climatologie bisogna avere un elevato numero di stazioni (anche se disponibili per un lasso temporale limitato); per le anomalie viceversa la densità spaziale ha un rilievo minore a causa della buona coerenza spaziale della variabilità temporale, mentre è importante la qualità dei dati e la loro estensione temporale. L'approccio utilizzato per le climatologie mensili è la regressione lineare pesata locale. Per ciascuna cella della griglia si stima una regressione lineare pesata della precipitazione in funzione dell'altitudine; si pesano di più le stazioni aventi caratteristiche simili a quelle della cella stessa. Invece le anomalie mensili si ricavano, per ogni cella di griglia, grazie a una media pesata delle anomalie delle vicine stazioni. Infine la sovrapposizione delle componenti spaziale (climatologie) e temporale (anomalie) consente di ottenere per ogni nodo del grigliato una serie temporale di precipitazioni mensili in valori assoluti. La bontà dei risultati viene poi valutata con gli errori quadratici medi (RMSE) e i coefficienti di correlazione di Pearson delle singole componenti ricostruite. Per mostrare le potenziali applicazioni del prodotto si esaminano alcuni casi studio.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combinatorial protocol (CP) is introduced here to interface it with the multiple linear regression (MLR) for variable selection. The efficiency of CP-MLR is primarily based on the restriction of entry of correlated variables to the model development stage. It has been used for the analysis of Selwood et al data set [16], and the obtained models are compared with those reported from GFA [8] and MUSEUM [9] approaches. For this data set CP-MLR could identify three highly independent models (27, 28 and 31) with Q2 value in the range of 0.632-0.518. Also, these models are divergent and unique. Even though, the present study does not share any models with GFA [8], and MUSEUM [9] results, there are several descriptors common to all these studies, including the present one. Also a simulation is carried out on the same data set to explain the model formation in CP-MLR. The results demonstrate that the proposed method should be able to offer solutions to data sets with 50 to 60 descriptors in reasonable time frame. By carefully selecting the inter-parameter correlation cutoff values in CP-MLR one can identify divergent models and handle data sets larger than the present one without involving excessive computer time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Twentieth Century Reanalysis (20CR) is an atmospheric dataset consisting of 56 ensemble members, which covers the entire globe and reaches back to 1871. To assess the suitability of this dataset for studying past extremes, we analysed a prominent extreme event, namely the Galveston Hurricane, which made landfall in September 1900 in Texas, USA. The ensemble mean of 20CR shows a track of the pressure minimum with a small standard deviation among the 56 ensemble members in the area of the Gulf of Mexico. However, there are systematic differences between the assimilated “Best Track” from the International Best Track Archive for Climate Stewardship (IBTrACS) and the ensemble mean track in 20CR. East of the Strait of Florida, the tracks derived from 20CR are located systematically northeast of the assimilated track while in the Gulf of Mexico, the 20CR tracks are systematically shifted to the southwest compared to the IBTrACS position. The hurricane can also be observed in the wind field, which shows a cyclonic rotation and a relatively calm zone in the centre of the hurricane. The 20CR data reproduce the pressure gradient and cyclonic wind field. Regarding the amplitude of the wind speeds, the ensemble mean values from 20CR are significantly lower than the wind speeds known from measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a vertically resolved zonal mean monthly mean global ozone data set spanning the period 1901 to 2007, called HISTOZ.1.0. It is based on a new approach that combines information from an ensemble of chemistry climate model (CCM) simulations with historical total column ozone information. The CCM simulations incorporate important external drivers of stratospheric chemistry and dynamics (in particular solar and volcanic effects, greenhouse gases and ozone depleting substances, sea surface temperatures, and the quasi-biennial oscillation). The historical total column ozone observations include ground-based measurements from the 1920s onward and satellite observations from 1970 to 1976. An off-line data assimilation approach is used to combine model simulations, observations, and information on the observation error. The period starting in 1979 was used for validation with existing ozone data sets and therefore only ground-based measurements were assimilated. Results demonstrate considerable skill from the CCM simulations alone. Assimilating observations provides additional skill for total column ozone. With respect to the vertical ozone distribution, assimilating observations increases on average the correlation with a reference data set, but does not decrease the mean squared error. Analyses of HISTOZ.1.0 with respect to the effects of El Niño–Southern Oscillation (ENSO) and of the 11 yr solar cycle on stratospheric ozone from 1934 to 1979 qualitatively confirm previous studies that focussed on the post-1979 period. The ENSO signature exhibits a much clearer imprint of a change in strength of the Brewer–Dobson circulation compared to the post-1979 period. The imprint of the 11 yr solar cycle is slightly weaker in the earlier period. Furthermore, the total column ozone increase from the 1950s to around 1970 at northern mid-latitudes is briefly discussed. Indications for contributions of a tropospheric ozone increase, greenhouse gases, and changes in atmospheric circulation are found. Finally, the paper points at several possible future improvements of HISTOZ.1.0.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the understanding and representation of the impacts of volcanic eruptions on climate have improved in the last decades, uncertainties in the stratospheric aerosol forcing from large eruptions are now linked not only to visible optical depth estimates on a global scale but also to details on the size, latitude and altitude distributions of the stratospheric aerosols. Based on our understanding of these uncertainties, we propose a new model-based approach to generating a volcanic forcing for general circulation model (GCM) and chemistry–climate model (CCM) simulations. This new volcanic forcing, covering the 1600–present period, uses an aerosol microphysical model to provide a realistic, physically consistent treatment of the stratospheric sulfate aerosols. Twenty-six eruptions were modeled individually using the latest available ice cores aerosol mass estimates and historical data on the latitude and date of eruptions. The evolution of aerosol spatial and size distribution after the sulfur dioxide discharge are hence characterized for each volcanic eruption. Large variations are seen in hemispheric partitioning and size distributions in relation to location/date of eruptions and injected SO2 masses. Results for recent eruptions show reasonable agreement with observations. By providing these new estimates of spatial distributions of shortwave and long-wave radiative perturbations, this volcanic forcing may help to better constrain the climate model responses to volcanic eruptions in the 1600–present period. The final data set consists of 3-D values (with constant longitude) of spectrally resolved extinction coefficients, single scattering albedos and asymmetry factors calculated for different wavelength bands upon request. Surface area densities for heterogeneous chemistry are also provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lake water temperature (LWT) is an important driver of lake ecosystems and it has been identified as an indicator of climate change. Consequently, the Global Climate Observing System (GCOS) lists LWT as an essential climate variable. Although for some European lakes long in situ time series of LWT do exist, many lakes are not observed or only on a non-regular basis making these observations insufficient for climate monitoring. Satellite data can provide the information needed. However, only few satellite sensors offer the possibility to analyse time series which cover 25 years or more. The Advanced Very High Resolution Radiometer (AVHRR) is among these and has been flown as a heritage instrument for almost 35 years. It will be carried on for at least ten more years, offering a unique opportunity for satellite-based climate studies. Herein we present a satellite-based lake surface water temperature (LSWT) data set for European water bodies in or near the Alps based on the extensive AVHRR 1 km data record (1989–2013) of the Remote Sensing Research Group at the University of Bern. It has been compiled out of AVHRR/2 (NOAA-07, -09, -11, -14) and AVHRR/3 (NOAA-16, -17, -18, -19 and MetOp-A) data. The high accuracy needed for climate related studies requires careful pre-processing and consideration of the atmospheric state. The LSWT retrieval is based on a simulation-based scheme making use of the Radiative Transfer for TOVS (RTTOV) Version 10 together with ERA-interim reanalysis data from the European Centre for Medium-range Weather Forecasts. The resulting LSWTs were extensively compared with in situ measurements from lakes with various sizes between 14 and 580 km2 and the resulting biases and RMSEs were found to be within the range of −0.5 to 0.6 K and 1.0 to 1.6 K, respectively. The upper limits of the reported errors could be rather attributed to uncertainties in the data comparison between in situ and satellite observations than inaccuracies of the satellite retrieval. An inter-comparison with the standard Moderate-resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature product exhibits RMSEs and biases in the range of 0.6 to 0.9 and −0.5 to 0.2 K, respectively. The cross-platform consistency of the retrieval was found to be within ~ 0.3 K. For one lake, the satellite-derived trend was compared with the trend of in situ measurements and both were found to be similar. Thus, orbital drift is not causing artificial temperature trends in the data set. A comparison with LSWT derived through global sea surface temperature (SST) algorithms shows lower RMSEs and biases for the simulation-based approach. A running project will apply the developed method to retrieve LSWT for all of Europe to derive the climate signal of the last 30 years. The data are available at doi:10.1594/PANGAEA.831007.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The OPERA detector, designed to search for νμ → ντ oscillations in the CNGS beam, is located in the underground Gran Sasso laboratory, a privileged location to study TeV-scale cosmic rays. For the analysis here presented, the detector was used to measure the atmospheric muon charge ratio in the TeV region. OPERA collected chargeseparated cosmic ray data between 2008 and 2012. More than 3 million atmospheric muon events were detected and reconstructed, among which about 110000 multiple muon bundles. The charge ratio Rμ ≡ Nμ+/Nμ− was measured separately for single and for multiple muon events. The analysis exploited the inversion of the magnet polarity which was performed on purpose during the 2012 Run. The combination of the two data sets with opposite magnet polarities allowedminimizing systematic uncertainties and reaching an accurate determination of the muon charge ratio. Data were fitted to obtain relevant parameters on the composition of primary cosmic rays and the associated kaon production in the forward fragmentation region. In the surface energy range 1–20 TeV investigated by OPERA, Rμ is well described by a parametric model including only pion and kaon contributions to themuon flux, showing no significant contribution of the prompt component. The energy independence supports the validity of Feynman scaling in the fragmentation region up to 200 TeV/nucleon primary energy.