1000 resultados para Dynamic Stall
Resumo:
We investigate the potential for the third-order aberrations coma and trefoil to provide a signed cue to accommodation. It is first demonstrated theoretically (with some assumptions) that the point spread function is insensitive to the sign of spherical defocus in the presence of odd-order aberrations. In an experimental investigation, the accommodation response to a sinusoidal change in vergence (1–3 D, 0.2 Hz) of a monochromatic stimulus was obtained with a dynamic infrared optometer. Measurements were obtained in 10 young visually normal individuals with and without custom contact lenses that induced low and high values of r.m.s. trefoil (0.25, 1.03 μm) and coma (0.34, 0.94 μm). Despite variation between subjects, we did not find any statistically significant increase or decrease in the accommodative gain for low levels of trefoil and coma, although effects approached or reached significance for the high levels of trefoil and coma. Theoretical and experimental results indicate that the presence of Zernike third-order aberrations on the eye does not seem to play a crucial role in the dynamics of the accommodation response.
Resumo:
This paper explores how game authoring tools can teach processes that transform everyday places into engaging learning spaces. It discusses the motivation inherent in playing games and creating games for others, and how this stimulates an iterative process of creation and reflection and evokes a natural desire to engage in learning. The use of MiLK at the Adelaide Botanic Gardens is offered as a case in point. MiLK is an authoring tool that allows students and teachers to create and share SMS games for mobile phones. A group of South Australian high school students used MiLK to play a game, create their own games and play each other’s games during a day at the gardens. This paper details the learning processes involved in these activities and how the students, without prompting, reflected on their learning, conducted peer assessment, and engaged in a two-way discussion with their teacher about new technologies and their implications for learning. The paper concludes with a discussion of the needs and requirements of 21st century learners and how MiLK can support constructivist and connectivist teaching methods that engage learners and will produce an appropriately skilled future workforce.
Resumo:
Despite the numerous observations that dynamic capabilities lie at the source of competitive advantage, we still have limited knowledge as to how access to firm-based resources and changes to these affect the development of dynamic capabilities. In this paper, we examine founder human capital, access to employee human capital, access to technological expertise, access to other specific expertise, and access to two types of tangible resources in a sample of new firms in Sweden. We empirically measure four dynamic capabilities and find that the nature and effect of resources employed in the development of these capabilities vary greatly. For the most part, there are positive effects stemming from access to particular resources. However, for some resources, such as access to employee human capital and access to financial capital, unexpected negative effects also appear. This study therefore provides statistical evidence as to the varying role of resources in capability development. Importantly, we also find that changes in resource bases have more influential roles in the development of dynamic capabilities than the resource stock variables that were measured at an earlier stage of firm development. This provides empirical support for the notion of treating the firm as a dynamic flow of resources as opposed to a static stock. This finding also highlights the importance of longitudinal designs in studies of dynamic capability development. Further recommendations for future empirical studies of dynamic capabilities are presented.
Resumo:
Ameliorated strategies were put forward to improve the model predictive control in reducing the wind induced vibration of spatial latticed structures. The dynamic matrix control (DMC) predictive method was used and the reference trajectory which is called the decaying functions was suggested for the analysis of spatial latticed structure (SLS) under wind loads. The wind-induced vibration control model of SLS with improved DMC model predictive control was illustrated, then the different feedback strategies were investigated and a typical SLS was taken as example to investigate the reduction of wind-induced vibration. In addition, the robustness and reliability of DMC strategy were discussed by varying the model configurations.
Resumo:
Networks are having a profound impact on the way society is organised at the local, national and international level. Networks are not ‘business as usual’. The defining feature of networks and a key indicator for their success is the strength and quality of the interactions between members. This relational power of networks provides the mechanism to bring together previously dispersed and even competitive entities into a collective venture. Such an operating context demands the ability to work in a more horizontal, relational manner. In addition a social infrastructure must be formed that will support and encourage efforts to become more collaborative. This paper seeks to understand how network members come to know about working in networks, how they work on their relationships and create new meanings about the nature of their linked work. In doing so, it proposes that learning, language and leadership, herein defined as the ‘3Ls’ represent critical mediating aspects for networks.
Resumo:
Supply chain relationships between firms are increasingly important in terms of both competitiveness and developing dynamic capability to respond to rapid changes in the market. Innovation capacity both in firms and in supply chains is also integral to responding to dynamic markets and customer needs. This explorative research examines a sample of firms active in supply chain relationships in Australia, as a pilot study, to examine any linkages between firm dynamic capabilities and supply chains developing innovative capacity to meet competitive and market changes. Initial findings indicate that although firms focus on developing capabilities, particularly dynamic capabilities to innovate individually, these preliminary findings indicate little reliance on developing their supply chain innovation capacity. This study is the initial stage of more extensive research on this topic.
Resumo:
The automation of various aspects of air traffic management has many wide-reaching benefits including: reducing the workload for Air Traffic Controllers; increasing the flexibility of operations (both civil and military) within the airspace system through facilitating automated dynamic changes to en-route flight plans; ensuring safe aircraft separation for a complex mix of airspace users within a highly complex and dynamic airspace management system architecture. These benefits accumulate to increase the efficiency and flexibility of airspace use(1). Such functions are critical for the anticipated increase in volume of manned and unmanned aircraft traffic. One significant challenge facing the advancement of airspace automation lies in convincing air traffic regulatory authorities that the level of safety achievable through the use of automation concepts is comparable to, or exceeds, the accepted safety performance of the current system.
Resumo:
In a typical collaborative application, users contends for common resources by mutual exclusion. The introduction of multi-modal environment, however, introduced problems such as frequent dropping of connection or limited connectivity speed of mobile users. This paper target 3D resources which require additional considerations such as dependency of users' manipulation command. This paper introduces Dynamic Locking Synchronisation technique to enable seamless and collaborative environment for large number of user, by combining the contention-free concepts of locking mechanism and the seamless nature of lockless design.
Resumo:
This paper presents dynamic hysteresis band height control to reduce the overshoot and undershoot issue on output voltage caused by load change. The converters in this study are Boost and Positive Buck-Boost (PBB) converters. PBB has been controlled to work in a step up conversion and avoid overshoot when load is changed. Simulation and experimental results have been presented to verify the proposed method.
Resumo:
The accuracy of data derived from linked-segment models depends on how well the system has been represented. Previous investigations describing the gait of persons with partial foot amputation did not account for the unique anthropometry of the residuum or the inclusion of a prosthesis and footwear in the model and, as such, are likely to have underestimated the magnitude of the peak joint moments and powers. This investigation determined the effect of inaccuracies in the anthropometric input data on the kinetics of gait. Toward this end, a geometric model was developed and validated to estimate body segment parameters of various intact and partial feet. These data were then incorporated into customized linked-segment models, and the kinetic data were compared with that obtained from conventional models. Results indicate that accurate modeling increased the magnitude of the peak hip and knee joint moments and powers during terminal swing. Conventional inverse dynamic models are sufficiently accurate for research questions relating to stance phase. More accurate models that account for the anthropometry of the residuum, prosthesis, and footwear better reflect the work of the hip extensors and knee flexors to decelerate the limb during terminal swing phase.
Resumo:
Cognitive-energetical theories of information processing were used to generate predictions regarding the relationship between workload and fatigue within and across consecutive days of work. Repeated measures were taken on board a naval vessel during a non-routine and a routine patrol. Data were analyzed using growth curve modeling. Fatigue demonstrated a non-monotonic relationship within days in both patrols – fatigue was high at midnight, started decreasing until noontime and then increased again. Fatigue increased across days towards the end of the non-routine patrol, but remained stable across days in the routine patrol. The relationship between workload and fatigue changed over consecutive days in the non-routine patrol. At the beginning of the patrol, low workload was associated with fatigue. At the end of the patrol, high workload was associated with fatigue. This relationship could not be tested in the routine patrol, however it demonstrated a non-monotonic relationship between workload and fatigue – low and high workloads were associated with the highest fatigue. These results suggest that the optimal level of workload can change over time and thus have implications for the management of fatigue.
Resumo:
Mobile robots are widely used in many industrial fields. Research on path planning for mobile robots is one of the most important aspects in mobile robots research. Path planning for a mobile robot is to find a collision-free route, through the robot’s environment with obstacles, from a specified start location to a desired goal destination while satisfying certain optimization criteria. Most of the existing path planning methods, such as the visibility graph, the cell decomposition, and the potential field are designed with the focus on static environments, in which there are only stationary obstacles. However, in practical systems such as Marine Science Research, Robots in Mining Industry, and RoboCup games, robots usually face dynamic environments, in which both moving and stationary obstacles exist. Because of the complexity of the dynamic environments, research on path planning in the environments with dynamic obstacles is limited. Limited numbers of papers have been published in this area in comparison with hundreds of reports on path planning in stationary environments in the open literature. Recently, a genetic algorithm based approach has been introduced to plan the optimal path for a mobile robot in a dynamic environment with moving obstacles. However, with the increase of the number of the obstacles in the environment, and the changes of the moving speed and direction of the robot and obstacles, the size of the problem to be solved increases sharply. Consequently, the performance of the genetic algorithm based approach deteriorates significantly. This motivates the research of this work. This research develops and implements a simulated annealing algorithm based approach to find the optimal path for a mobile robot in a dynamic environment with moving obstacles. The simulated annealing algorithm is an optimization algorithm similar to the genetic algorithm in principle. However, our investigation and simulations have indicated that the simulated annealing algorithm based approach is simpler and easier to implement. Its performance is also shown to be superior to that of the genetic algorithm based approach in both online and offline processing times as well as in obtaining the optimal solution for path planning of the robot in the dynamic environment. The first step of many path planning methods is to search an initial feasible path for the robot. A commonly used method for searching the initial path is to randomly pick up some vertices of the obstacles in the search space. This is time consuming in both static and dynamic path planning, and has an important impact on the efficiency of the dynamic path planning. This research proposes a heuristic method to search the feasible initial path efficiently. Then, the heuristic method is incorporated into the proposed simulated annealing algorithm based approach for dynamic robot path planning. Simulation experiments have shown that with the incorporation of the heuristic method, the developed simulated annealing algorithm based approach requires much shorter processing time to get the optimal solutions in the dynamic path planning problem. Furthermore, the quality of the solution, as characterized by the length of the planned path, is also improved with the incorporated heuristic method in the simulated annealing based approach for both online and offline path planning.
Resumo:
Objectives. To evaluate the performance of the dynamic-area high-speed videokeratoscopy technique in the assessment of tear film surface quality with and without the presence of soft contact lenses on eye. Methods. Retrospective data from a tear film study using basic high-speed videokeratoscopy, captured at 25 frames per second, (Kopf et al., 2008, J Optom) were used. Eleven subjects had tear film analysis conducted in the morning, midday and evening on the first and seventh day of one week of no lens wear. Five of the eleven subjects then completed an extra week of hydrogel lens wear followed by a week of silicone hydrogel lens wear. Analysis was performed on a 6 second period of the inter-blink recording. The dynamic-area high-speed videokeratoscopy technique uses the maximum available area of Placido ring pattern reflected from the tear interface and eliminates regions of disturbance due to shadows from the eyelashes. A value of tear film surface quality was derived using image rocessing techniques, based on the quality of the reflected ring pattern orientation. Results. The group mean tear film surface quality and the standard deviations for each of the conditions (bare eye, hydrogel lens, and silicone hydrogel lens) showed a much lower coefficient of variation than previous methods (average reduction of about 92%). Bare eye measurements from the right and left eyes of eleven individuals showed high correlation values (Pearson’s correlation r = 0.73, p < 0.05). Repeated measures ANOVA across the 6 second period of measurement in the normal inter-blink period for the bare eye condition showed no statistically significant changes. However, across the 6 second inter-blink period with both contact lenses, statistically significant changes were observed (p < 0.001) for both types of contact lens material. Overall, wearing hydrogel and silicone hydrogel lenses caused the tear film surface quality to worsen compared with the bare eye condition (repeated measures ANOVA, p < 0.0001 for both hydrogel and silicone hydrogel). Conclusions. The results suggest that the dynamic-area method of high-speed videokeratoscopy was able to distinguish and quantify the subtle, but systematic worsening of tear film surface quality in the inter-blink interval in contact lens wear. It was also able to clearly show a difference between bare eye and contact lens wearing conditions.
Resumo:
A new method for noninvasive assessment of tear film surface quality (TFSQ) is proposed. The method is based on high-speed videokeratoscopy in which the corneal area for the analysis is dynamically estimated in a manner that removes videokeratoscopy interference from the shadows of eyelashes but not that related to the poor quality of the precorneal tear film that is of interest. The separation between the two types of seemingly similar videokeratoscopy interference is achieved by region-based classification in which the overall noise is first separated from the useful signal (unaltered videokeratoscopy pattern), followed by a dedicated interference classification algorithm that distinguishes between the two considered interferences. The proposed technique provides a much wider corneal area for the analysis of TFSQ than the previously reported techniques. A preliminary study with the proposed technique, carried out for a range of anterior eye conditions, showed an effective behavior in terms of noise to signal separation, interference classification, as well as consistent TFSQ results. Subsequently, the method proved to be able to not only discriminate between the bare eye and the lens on eye conditions but also to have the potential to discriminate between the two types of contact lenses.