922 resultados para Dynamic Light-Scattering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reviews the earlier experimental studies on light scattering in quartz near its phase transition, which ultimately laid the foundation for the basic concept of the soft mode. The theoretical work on the subject has been briefly referred to. A list of ferroelectrics in which soft mode studies have been carried out near TC using laser Raman spectroscopy is appended. Reference has also been made to the appearance of the central mode with abnormal increase in intensity at TC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visual problems may be the first symptoms of diabetes. There have been several reports of transient changes in refraction of people newly diagnosed with diabetes. Visual acuity and refraction may be affected when there are ocular biometric changes. Small but significant biometrical changes have been found by some authors during hyperglycaemia and during reduction of hyperglycaemia.[4] Here, we describe a case of type 2 diabetes that was detected from ocular straylight and intraocular thickness measurements...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An indirect mechanism of light scattering from spin-waves in ferromagnetic insulators via two-magnon one-phonon process is proposed. Following linear response theory, an expression has been derived for the differential scattering cross-section in the mean-field-approximation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light scattering, or scattering and absorption of electromagnetic waves, is an important tool in all remote-sensing observations. In astronomy, the light scattered or absorbed by a distant object can be the only source of information. In Solar-system studies, the light-scattering methods are employed when interpreting observations of atmosphereless bodies such as asteroids, atmospheres of planets, and cometary or interplanetary dust. Our Earth is constantly monitored from artificial satellites at different wavelengths. With remote sensing of Earth the light-scattering methods are not the only source of information: there is always the possibility to make in situ measurements. The satellite-based remote sensing is, however, superior in the sense of speed and coverage if only the scattered signal can be reliably interpreted. The optical properties of many industrial products play a key role in their quality. Especially for products such as paint and paper, the ability to obscure the background and to reflect light is of utmost importance. High-grade papers are evaluated based on their brightness, opacity, color, and gloss. In product development, there is a need for computer-based simulation methods that could predict the optical properties and, therefore, could be used in optimizing the quality while reducing the material costs. With paper, for instance, pilot experiments with an actual paper machine can be very time- and resource-consuming. The light-scattering methods presented in this thesis solve rigorously the interaction of light and material with wavelength-scale structures. These methods are computationally demanding, thus the speed and accuracy of the methods play a key role. Different implementations of the discrete-dipole approximation are compared in the thesis and the results provide practical guidelines in choosing a suitable code. In addition, a novel method is presented for the numerical computations of orientation-averaged light-scattering properties of a particle, and the method is compared against existing techniques. Simulation of light scattering for various targets and the possible problems arising from the finite size of the model target are discussed in the thesis. Scattering by single particles and small clusters is considered, as well as scattering in particulate media, and scattering in continuous media with porosity or surface roughness. Various techniques for modeling the scattering media are presented and the results are applied to optimizing the structure of paper. However, the same methods can be applied in light-scattering studies of Solar-system regoliths or cometary dust, or in any remote-sensing problem involving light scattering in random media with wavelength-scale structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We predict the dynamic light scattering intensity S(q,t) for the L3 phase (anomalous isotropic phase) of dilute surfactant solutions. Our results are based on a Landau-Ginzburg approach, which was previously used to explain the observed static structure factor S(q, 0). In the extreme limit of small q, we find a monoexponential decay with marginal or irrelevant hydrodynamic interactions. In most other regimes the decay of S(q,t) is strongly nonexponential; in one case, it is purely algebraic at long times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study dye sensitized solar cells (DSSCs) have been fabricated with a tri-layer photo anode consisting of hydrothermally prepared titania nano tubes (TNT) having a diameter of 9-10 nm and length of several micrometers as outer layer, P25 TiO2 powder as transparent light absorbing middle layer and a compact TiO2 inner layer to improve the adhesion of different layers on a transparent conducting oxide coated substrate. In comparison to cells fabricated using TNTs or P25 alone, the tri-layer DSSCs exhibit an enhanced efficiency of 7.15% with a current density of 17.12 mA cm(-2) under AM 1.5 illumination. The enhancement is attributed to the light scattering generated by TNTs aggregates, reduction in electron transport resistance at the TiO2/dye/electrolyte interface and an improvement in electron life-time. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A special morphological zinc oxide (ZnO) photoanode for dye-sensitized solar cell was fabricated by simple sol-gel drop casting technique. This film shows a wrinkled structure resembling the roots of banyan tree, which acts as an effective self scattering layer for harvesting more visible light and offers an easy transport path for photo-injected electrons. These ZnO electrode of low thickness (similar to 5 mu m) gained an enhanced short-circuit current density of 6.15 mA/cm(2), open-circuit voltage of 0.67 V, fill factor of 0.47 and overall conversion efficiency of 1.97 % under 1 sun illumination. This shows a high conversion efficiency and a superior performance than that of ZnO nanoparticle-based photoanode (eta similar to 1.13 %) of high thickness (similar to 8 mu m).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extinction cross sections of a system containing two particles are calculated by the T-matrix method, and the results are compared with those of two single particles with single-scattering approximation. The necessity of the correction of the refractive indices of water and polystyrene for different incident wavelengths is particularly addressed in the calculation. By this means, the volume fractions allowed for certain accuracy requirements of single-scattering approximation in the light scattering experiment can be evaluated. The volume fractions calculated with corrected refractive indices are compared with those obtained with fixed refractive indices which have been rather commonly used, showing that fixed refractive indices may cause significant error in evaluating multiple scattering effect. The results also give a simple criterion for selecting the incident wavelength and particle size to avoid the 'blind zone' in the turbidity measurement, where the turbidity change is insensitive to aggregation of two particles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Incoherent subharmonic light scattering in isotropic media is a new kind of nonlinear light scattering, which involves single input photon and multiple output photons of equal frequency. We investigate theoretically the dependence of the subharmonic scattering intensity on the hyperpolarizability of molecules and the incident intensity using nonlinear optics theory similar to that used for Hyper-Rayleigh scattering and degenerate optical parametric oscillators. It is derived that the subharmonic scattering intensities grow exponentially or superexponentially with the hyperpolarizability of molecules and the incident intensity. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By introducing the scattering probability of a subsurface defect (SSD) and statistical distribution functions of SSD radius, refractive index, and position, we derive an extended bidirectional reflectance distribution function (BRDF) from the Jones scattering matrix. This function is applicable to the calculation for comparison with measurement of polarized light-scattering resulting from a SSD. A numerical calculation of the extended BRDF for the case of p-polarized incident light was performed by means of the Monte Carlo method. Our numerical results indicate that the extended BRDF strongly depends on the light incidence angle, the light scattering angle, and the out-of-plane azimuth angle. We observe a 180 degrees symmetry with respect to the azimuth angle. We further investigate the influence of the SSD density, the substrate refractive index, and the statistical distributions of the SSD radius and refractive index on the extended BRDF. For transparent substrates, we also find the dependence of the extended BRDF on the SSD positions. (c) 2006 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A total integrated scattering (TIS) measurement was performed to investigate the surface and volume scattering of K9 glass substrates with low reflectance. Ag layers with thicknesses of 60 nm were deposited on the front and back surfaces of the K9 glass substrates by the magnetron sputtering technique. Surface scattering of the K9 glass substrate was obtained by the TIS measurement of the Ag layers on the assumption that the Ag layers and the K9 substrate had the same surface profile. Volume scattering of the substrates was deduced by subtracting the front and back surface scattering from the total scattering of the substrates. (c) 2005 Optical Society of America.