865 resultados para Dynamic Contact Angle


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study describes the physicochemical properties and in vitro resistance to encrustation of solvent cast films composed of either poly(epsilon-caprolactone) (PCL), prepared using different ratios of high (50,000) to low (4000) (molecular weight) m.wt., or blends of PCL and the polymeric antimicrobial complex, poly(vinylpyrrolidone)-iodine (PVP-I). The incorporation of PVP-I offered antimicrobial activity to the biomaterials. Films were characterised in terms of mechanical (tensile analysis, dynamic mechanical thermal analysis) and surface properties (dynamic contact angle analysis, scanning electron microscopy), whereas degradation (at 37degreesC in PBS at pH 7.4) was determined gravimetrically. The resistance of the films to encrustation was evaluated using an in vitro encrustation model. Reductions in the ratio of high:low-m.wt. PCL significantly reduced the ultimate tensile strength, % elongation at break and the advancing contact angle of the films. These effects were attributed to alterations in the amorphous content and the more hydrophilic nature of the films. Conversely, there were no alterations in Young's modulus, the viscoelastic properties and glass-transition temperature. Incorporation of PVP-I did not affect the mechanical or rheological properties of the films, indicative of a limited interaction between the two polymers in the solid state. Manipulation of the high:low m.wt. ratio of PCL significantly altered the degradation of the films, most notably following longer immersion periods, and resistance to encrustation. Accordingly, maximum degradation and resistance to encrustation was observed with the biomaterial composed of 40:60 high:low m.wt. ratios of PCL; however, the mechanical properties of this system were considered inappropriate for clinical application. Films composed of either 50:50 or 60:40 ratio of high:low m.wt. PCL offered an appropriate compromise between physicochemical properties and resistance to encrustation. This study has highlighted the important usefulness of degradable polymer systems as ureteral biomaterials

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, a series of hydrogels was synthesized by free radical polymerization, namely poly(2-(hydroxyethyl) methacrylate) (pHEMA), poly(4-(hydroxybutyl)methacrylate) (pHBMA), poly(6-(hydroxyhexyl)methacrylate) (pHHMA), and copolymers composed of N-isopropylacrylamide (NIPAA), methacrylic acid (MA), NIPAA, and the above monomers. The surface, mechanical, and swelling properties (at 20 and 37 degrees C, pH 6) of the polymers were determined using dynamic contact angle analysis, tensile analysis, and thermogravimetry, respectively. The T-g and lower critical solution temperatures (LCST) were determined using modulated DSC and oscillatory rheometry, respectively. Drug loading of the hydrogels with chlorhexidine diacetate was performed by immersion in a drug solution at 20 degrees C (

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In practice, polyvinyl chloride endotracheal tubes and polyurethane urinary catheters are located in areas where they are exposed to the conditioning fluids saliva and urine, respectively. Samples of both biomaterials were incubated in these conditioning fluids and, following treatment, dynamic contact angle measurement and surface roughness assessment by atomic force microscopy were used to analyse surface characteristics. Over a 24 h period of contact with the conditioning fluids, the surface of both materials became significantly more hydrophilic (p

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical algorithm for the biharmonic equation in domains with piecewise smooth boundaries is presented. It is intended for problems describing the Stokes flow in the situations where one has corners or cusps formed by parts of the domain boundary and, due to the nature of the boundary conditions on these parts of the boundary, these regions have a global effect on the shape of the whole domain and hence have to be resolved with sufficient accuracy. The algorithm combines the boundary integral equation method for the main part of the flow domain and the finite-element method which is used to resolve the corner/cusp regions. Two parts of the solution are matched along a numerical ‘internal interface’ or, as a variant, two interfaces, and they are determined simultaneously by inverting a combined matrix in the course of iterations. The algorithm is illustrated by considering the flow configuration of ‘curtain coating’, a flow where a sheet of liquid impinges onto a moving solid substrate, which is particularly sensitive to what happens in the corner region formed, physically, by the free surface and the solid boundary. The ‘moving contact line problem’ is addressed in the framework of an earlier developed interface formation model which treats the dynamic contact angle as part of the solution, as opposed to it being a prescribed function of the contact line speed, as in the so-called ‘slip models’. Keywords: Dynamic contact angle; finite elements; free surface flows; hybrid numerical technique; Stokes equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have established the surface tension relaxation time in the liquid-solid interfaces of Lennard-Jones (LJ) liquids by means of direct measurements in molecular dynamics (MD) simulations. The main result is that the relaxation time is found to be almost independent of the molecular structures and viscosity of the liquids (at seventy-fold change) used in our study and lies in such a range that in slow hydrodynamic motion the interfaces are expected to be at equilibrium. The implications of our results for the modelling of dynamic wetting processes and interpretation of dynamic contact angle data are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The functional capacity of osseointegrated dental implants to bear load is largely dependent on the quality of the interface between the bone and implant. Sandblasted and acid-etched (SLA) surfaces have been previously shown to enhance bone apposition. In this study, the SLA has been compared with a chemically modified SLA (modSLA) surface. The increased wettability of the modSLA surface in a protein solution was verified by dynamic contact angle analysis. Using a well-established animal model with a split-mouth experimental design, implant removal torque testing was performed to determine the biomechanical properties of the bone-implant interface. All implants had an identical cylindrical shape with a standard thread configuration. Removal torque testing was performed after 2, 4, and 8 weeks of bone healing (n = 9 animals per healing period, three implants per surface type per animal) to evaluate the interfacial shear strength of each surface type. Results showed that the modSLA surface was more effective in enhancing the interfacial shear strength of implants in comparison with the conventional SLA surface during early stages of bone healing. Removal torque values of the modSLA-surfaced implants were 8-21% higher than those of the SLA implants (p = 0.003). The mean removal torque values for the modSLA implants were 1.485 N m at 2 weeks, 1.709 N m at 4 weeks, and 1.345 N m at 8 weeks; and correspondingly, 1.231 N m, 1.585 N m, and 1.143 N m for the SLA implants. The bone-implant interfacial stiffness calculated from the torque-rotation curve was on average 9-14% higher for the modSLA implants when compared with the SLA implants (p = 0.038). It can be concluded that the modSLA surface achieves a better bone anchorage during early stages of bone healing than the SLA surface; chemical modification of the standard SLA surface likely enhances bone apposition and this has a beneficial effect on the interfacial shear strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An efficient means of evaluating potential biomaterials is to use the in vitro fibroblast cell culture model. However, the chemistry which influences cell adhesion on polymer substrates is poorly understood. The work in this thesis aims to rationalise several theories of current opinion and introduce new chemical techniques that may predict cellular behaviour. The keratoprosthesis is a typical example of the need to be able to manipulate cell adhesion of materials since both adhesive and non adhesive sections are needed for proper integration and optical function. Calcein AM/ethidium homodimer-1 and DAPI assays were carried out using 3T3 and EKl.BR cells. Poly(HEMA) was found to be the most cell adhesive hydrogel tested. The reactivity of monomers and the resulting sequence distribution were found to affect surface properties and this may explain the poor levels of cell adhesion seen on NVP/MMA copolymers. Surface free energy is shown to be dependent on the polar and non polar groups present along the backbone chain of the polymers. Dehydrated and hydrated contact angle measurements show the effect of rotation of surface groups around the backbone chain. This effect is most apparent on hydrogels containing methacrylic acid. Dynamic contact angle measurements confirm sequence distribution irregularities and demonstrate the mobility of surface groups. Incorporation of NVI or DEAEMA into the hydrogels does not affect the mobility of the surface groups despite their bulkiness. Foetal calf serum was used for the first time as a test solution in an attempt to mimic a biological environment during surface experiments. A Vroman effect may be present, and may involve different surface proteins for each material tested. This interdisciplinary study combines surface characterisation and biological testing to further the knowledge of the biomaterial/host interface. Surface chemistry techniques appear to be insufficiently sensitive to predict cellular behaviour. The degree of ionisation of hydrogels containing ionic groups depends on the nature of the functional groups as well as the concentration and this is an important parameter to consider when comparing charged materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogels may be described as cross-linked hydrophilic polymers that swell but do not dissolve in water. The production of high water content hydrogels was the subject of investigation. Based upon copolymer compositions that had already achieved commercial success as biomaterials, new monomers were added or substituted in and the effects observed. The addition of N-isopropyl acrylamide to an acrylamide-based composition that had previously been designed to become a contact lens, produced materials that showed smart effects in that the water content showed dependence on the temperature of the hydrating solution. Such thermo-responsive materials have potential uses in drug delivery, ultrafiltration and cell culture surfaces. Proteoglycans in nature have an important role to play in structural support where a highly hydrophilic structure maintains lubricious surfaces. Certain functional groups that impart this hydrophilicity are present in certain sulphonate monomers, Bis(3-sulphopropyl ester) itaconate, dipotassium salt (SPI), 3-Sulphopropyl ester acrylate, potassium salt (SPA) and Sodium 2-(acrylamido)-2-methyl propane sulphonate (NaAMPS). These monomers were incorporated into a HEMA-based copolymer that had been designed initially as a contact lens and the resulting effects examined. Highly hydrophilic materials resulted that showed reduced protein deposition over the neutral core material. It is postulated that a sulphonate group would have a larger number of hydration shells around it than for example methacrylic acid, leading to more dynamic exchange and so reducing the adsorption of biological solutes. A cationic monomer was added to bring back the net anionic nature of the sulphonate hydrogels and the effects studied. Ionic interactions were found to cause a reduction in the water content of the resulting materials as the mobility of the network decreased, leading to stiffer but less extensible materials. The presence of a net dominant charge, whether negative or positive, appeared to act to reduce protein deposition, but increasing equivalence in the amount of both charges served to present a more 'neutral' surface and deposition subsequently increased. The grafting of hydrophilic hydrogel layers onto silicone elastomer was attempted and the results evaluated using dynamic contact angle measurements. Following plasma oxidation to reduce the surface energy barrier to aqueous grafting chemistry, it was found that the wettability of the modified elastomers could be significantly enhanced by such treatment. The SPA-grafted material in particular hinted at an osmotic drive for rehydration that may be exploited in biomaterials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the partial oxypropylation of filter paper cellulose fibers, employing two different basic catalyst, viz., potassium hydroxide and 1,4-diazabicyclo [2.2.2] octane, to activate the hydroxyl groups of the polysaccharide and thus provide the anionic initiation sites for the ""grafting-from"" polymerization of propylene oxide. The success of this chemical modification was assessed by FTIR spectroscopy, X-ray diffraction, scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis and contact angle measurements. The study of the role of the catalyst employed on the extent of the modification and on the mechanical properties of the ensuing composites, after hot pressing, showed that both the Bronsted and the Lewis base gave satisfactory results, without any marked difference.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple dependency between contact angle θ and velocity or surface tension has been predicted for the wetting and dewetting behavior of simple liquids. According to the hydrodynamic theory, this dependency was described by Cox and Voinov as θ ∼ Ca^(1/3) (Ca: Capillary number). For more complex liquids like surfactant solutions, this prediction is not directly given.rnHere I present a rotating drum setup for studying wetting/dewetting processes of surfactant solutions on the basis of velocity-dependent contact angle measurements. With this new setup I showed that surfactant solutions do not follow the predicted Cox-Voinov relation, but showed a stronger contact angle dependency on surface tension. All surfactants independent of their charge showed this difference from the prediction so that electrostatic interactions as a reason could be excluded. Instead, I propose the formation of a surface tension gradient close to the three-phase contact line as the main reason for the strong contact angle decrease with increasing surfactant concentration. Surface tension gradients are not only formed locally close to the three-phase contact line, but also globally along the air-liquid interface due to the continuous creation/destruction of the interface by the drum moving out of/into the liquid. By systematically hindering the equilibration routes of the global gradient along the interface and/or through the bulk, I was able to show that the setup geometry is also important for the wetting/dewetting of surfactant solutions. Further, surface properties like roughness or chemical homogeneity of the wetted/dewetted substrate influence the wetting/dewetting behavior of the liquid, i. e. the three-phase contact line is differently pinned on rough/smooth or homogeneous/inhomogeneous surfaces. Altogether I showed that the wetting/dewetting of surfactant solutions did not depend on the surfactant type (anionic, cationic, or non-ionic) but on the surfactant concentration and strength, the setup geometry, and the surface properties.rnSurfactants do not only influence the wetting/dewetting behavior of liquids, but also the impact behavior of drops on free-standing films or solutions. In a further part of this work, I dealt with the stability of the air cushion between drop and film/solution. To allow coalescence between drop and substrate, the air cushion has to vanish. In the presence of surfactants, the vanishing of the air is slowed down due to a change in the boundary condition from slip to no-slip, i. e. coalescence is suppressed or slowed down in the presence of surfactant.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present work, the reaction between a molten iron drop and dense alumina was studied using the X-ray sessile-drop method under different oxygen partial pressures in the gas atmosphere. The changes in contact angles between the iron drop and the alumina substrate were followed as functions of temperature and varying partial pressures of oxygen in the temperature range 1823 to 1873 K both in static and dynamic modes. The results of the contact angle measurements with pure iron in contact with dense alumina in extremely well-purified argon as well as under different oxygen partial pressures in the gas atmosphere showed good agreement with earlier measurements reported in the literature. In the dynamic mode, when argon was replaced by a CO-CO2-Ar mixture with a well-defined PO, in the gas, the contact angle showed an initial decrease followed by a period of nearly constant contact angle. At the end of this period, the length of which was a function of the P-O2 imposed, a further steep decrease in the contact angle was noticed. An intermediate layer of FeAl2O4 was detected in the scanning electron microscope (SEM) analysis of the reacted substrates. An interesting observation in the present experiments is that the iron drop moved away from the site of the reaction once the product layer covered the interface. The results are analyzed on the basis of the various forces acting on the drop.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, we have demonstrated three unique regimes in the evaporation lifecycle of a pair of sessile droplets placed in variable proximity on a hydrophobic substrate. For small separation distance, the droplets undergo asymmetric spatiotemporal,evaporation leading to contact angle hysteresis and suppressed vaporization. The reduced evaporation has been attributed quantitatively to the existence of a constrained vapor-rich dome between the two droplets. However, a dynamic decrease in the droplet radius due to solvent removal marks a return to symmetry in terms of evaporation and contact angle. We have described the variation in evaporation flux using a universal correction factor. We have also demonstrated the existence of a critical separation distance beyond which the droplets in the, droplet pair do not affect each other. The results are crucial to a plethora of applications ranging from surface patterning to lab-on-a-chip devices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, we have demonstrated three unique regimes in the evaporation lifecycle of a pair of sessile droplets placed in variable proximity on a hydrophobic substrate. For small separation distance, the droplets undergo asymmetric spatiotemporal,evaporation leading to contact angle hysteresis and suppressed vaporization. The reduced evaporation has been attributed quantitatively to the existence of a constrained vapor-rich dome between the two droplets. However, a dynamic decrease in the droplet radius due to solvent removal marks a return to symmetry in terms of evaporation and contact angle. We have described the variation in evaporation flux using a universal correction factor. We have also demonstrated the existence of a critical separation distance beyond which the droplets in the, droplet pair do not affect each other. The results are crucial to a plethora of applications ranging from surface patterning to lab-on-a-chip devices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electrowetting is one of the most effective methods to enhance wettability. A significant change of contact angle for the liquid droplet can result from the surface microstructures and the external electric field, without altering the chemical composition of the system. During the electrowetting process on a rough surface, the droplet exhibits a sharp transition from the Cassie-Baxter to the Wenzel regime at a low critical voltage. In this paper, a theoretical model for electrowetting is put forth to describe the dynamic electrical control of the wetting behavior at the low voltage, considering the surface topography. The theoretical results are found to be in good agreement with the existing experimental results. (c) Koninklijke Brill NV, Leiden, 2008.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigate the formation of microstructured polymer networks known as Breath Figure templated structures created by the presence of water vapour over evaporating polymer solutions. We use a highly controlled experimental approach to examine this dynamic and non-equilibrium process to uniquely compare pure solvent systems with polymer solutions and demonstrate using a combination of optical microscopy, focused ion-beam milling and SEM analysis that the porous polymer microstructure is completely controlled by the interfacial forces that exist between the water droplet and the solvent until a final drying dilation of the imprints. Water droplet contact angles are the same in the presence or absence of polymer and are independent of size for droplets above 5 μm. The polymer acts a spectator that serves to trap water droplets present at the air interface, and to transfer their shape into the polymer film. For the smallest pores, however, there are unexpected variations in the contact angle with pore size that are consistent with a possible contribution from line tension at these smaller dimensions. © The Royal Society of Chemistry.