966 resultados para Dual role


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ribonucleolytic activity of angiogenin (Ang) is essential to Ang's capacity to induce blood vessel formation. Previous x-ray diffraction and mutagenesis results have shown that the active site of the human protein is obstructed by Gln-117 and imply that the C-terminal region of Ang must undergo a conformational rearrangement to allow substrate binding and catalysis. As a first step toward structural characterization of this conformational change, additional site-directed mutagenesis and kinetic analysis have been used to examine the intramolecular interactions that stabilize the inactive conformation of the protein. Two residues of this region, Ile-119 and Phe-120, are found to make hydrophobic interactions with the remainder of the protein and thereby help to keep Gln-117 in its obstructive position. Furthermore, the suppression of activity by the intramolecular interactions of Ile-119 and Phe-120 is counterbalanced by an effect of the adjacent residues, Arg-121, Arg-122, and Pro-123 which do not appear to form contacts with the rest of the protein structure. They contribute to enzymatic activity, probably by constituting a peripheral subsite for binding polymeric substrates. The results reveal the nature of the conformational change in human Ang and assign a key role to the C-terminal region both in this process and, presumably, in the regulation of human Ang function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DPB11, a gene that suppresses mutations in two essential subunits of Saccharomyces cerevisiae DNA polymerase II(epsilon) encoded by POL2 and DPB2, was isolated on a multicopy plasmid. The nucleotide sequence of the DPB11 gene revealed an open reading frame predicting an 87-kDa protein. This protein is homologous to the Schizosaccharomyces pombe rad4+/cut5+ gene product that has a cell cycle checkpoint function. Disruption of DPB11 is lethal, indicating that DPB11 is essential for cell proliferation. In thermosensitive dpb11-1 mutant cells, S-phase progression is defective at the nonpermissive temperature, followed by cell division with unequal chromosomal segregation accompanied by loss of viability.dpb11-1 is synthetic lethal with any one of the dpb2-1, pol2-11, and pol2-18 mutations at all temperatures. Moreover, dpb11 cells are sensitive to hydroxyurea, methyl methanesulfonate, and UV irradiation. These results strongly suggest that Dpb11 is a part of the DNA polymerase II complex during chromosomal DNA replication and also acts in a checkpoint pathway during the S phase of the cell cycle to sense stalled DNA replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims/hypothesis
Intra-retinal extravasation and modification of LDL have been implicated in diabetic retinopathy: autophagy may mediate these effects.
Methods
Immunohistochemistry was used to detect autophagy marker LC3B in human and murine diabetic and non-diabetic retinas. Cultured human retinal capillary pericytes (HRCPs) were treated with in vitro-modified heavily-oxidised glycated LDL (HOG-LDL) vs native LDL (N-LDL) with or without autophagy modulators: green fluorescent protein–LC3 transfection; small interfering RNAs against Beclin-1, c-Jun NH(2)-terminal kinase (JNK) and C/EBP-homologous protein (CHOP); autophagy inhibitor 3-MA (5 mmol/l) and/or caspase inhibitor Z-VAD-fmk (100 μmol/l). Autophagy, cell viability, oxidative stress, endoplasmic reticulum stress, JNK activation, apoptosis and CHOP expression were assessed by western blots, CCK-8 assay and TUNEL assay. Finally, HOG-LDL vs N-LDL were injected intravitreally to STZ-induced diabetic vs control rats (yielding 50 and 200 mg protein/l intravitreal concentration) and, after 7 days, retinas were analysed for ER stress, autophagy and apoptosis.
Results
Intra-retinal autophagy (LC3B staining) was increased in diabetic vs non-diabetic humans and mice. In HRCPs, 50 mg/l HOG-LDL elicited autophagy without altering cell viability, and inhibition of autophagy decreased survival. At 100–200 mg/l, HOG-LDL caused significant cell death, and inhibition of either autophagy or apoptosis improved survival. Further, 25–200 mg/l HOG-LDL dose-dependently induced oxidative and ER stress. JNK activation was implicated in autophagy but not in apoptosis. In diabetic rat retina, 50 mg/l intravitreal HOG-LDL elicited autophagy and ER stress but not apoptosis; 200 mg/l elicited greater ER stress and apoptosis.
Conclusions
Autophagy has a dual role in diabetic retinopathy: under mild stress (50 mg/l HOG-LDL) it is protective; under more severe stress (200 mg/l HOG-LDL) it promotes cell death.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis work focuses on the role of TGF-beta family antagonists during the development of mouse dentition. Tooth develops through an interaction between the dental epithelium and underlying neural crest derived mesenchyme. The reciprocal signaling between these tissues is mediated by soluble signaling molecules and the balance between activatory and inhibitory signals appears to be essential for the pattern formation. We showed the importance of Sostdc1 in the regulation of tooth shape and number. The absence of Sostdc1 altered the molar cusp patterning and led to supernumerary tooth formation both in the molar and incisor region. We showed that initially, Sostdc1 expression is in the mesenchyme, suggesting that dental mesenchyme may limit supernumerary tooth induction. We tested this in wild-type incisors by minimizing the amount of mesenchymal tissue surrounding the incisor tooth germs prior to culture in vitro. The cultured teeth phenocopied the extra incisor phenotype of the Sostdc1-deficient mice. Furthermore, we showed that minimizing the amount of dental mesenchyme in cultured Sostdc1-deficient incisors caused the formation of additional de novo incisors that resembled the successional incisor development resulting from activated Wnt signaling. Sostdc1 seemed to be able to inhibit both mesenchymal BMP4 and epithelial canonical Wnt signaling, which thus allows Sostdc1 to restrict the enamel knot size and regulate the tooth shape and number. Our work emphasizes the dual role for the tooth mesenchyme as a suppressor as well as an activator during tooth development. We found that the placode, forming the thick mouse incisor, is prone to disintegration during initiation of tooth development. The balance between two mesenchymal TGF-beta family signals, BMP4 and Activin is essential in this regulation. The inhibition of BMP4 or increase in Activin signaling led to the splitting of the large incisor placode into two smaller placodes resulting in thin incisors. These two signals appeared to have different effects on tooth epithelium and the analysis of the double null mutant mice lacking Sostdc1 and Follistatin indicated that these TGF-beta inhibitors regulate the mutual balance of BMP and Activin in vivo. In addition, this work provides an alternative explanation for the issue of incisor identity published in Science by Tucker et al. in 1998 and proposes that the molar like morphology that can be obtained by inhibiting BMP signaling is due to partial splitting of the incisor placodes and not due to change in tooth identity from the incisor to the molar. This thesis work presents possible molecular mechanisms that may have modified the mouse dental pattern during evolution leading to the typical rodent dentition of modern mouse. The rodent dentition is specialized for gnawing and consists of two large continuously growing incisors and toothless diastema region separating the molars and incisors. The ancestors of rodents had higher number of more slender incisors together with canines and premolars. Additionally, murine rodents, which include the mouse, have lost their ability for tooth replacement. This work has revealed that the inhibitory molecules appear to play a role in the tooth number suppression by delineating the spatial and temporal action of the inductive signals. The results suggest that Sostdc1 plays an essential role in several stages of tooth development through the regulation of both the BMP and Wnt pathway. The work shows a dormant sequential tooth forming potential present in wild type mouse incisor region and gives a new perspective on tooth suppression by dental mesenchyme. It reveals as well a novel mechanism to create a large mouse incisor through the regulation of mesenchymal balance between inductive and inhibitory signals.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Topoisomerase II (topo II) is a dyadic enzyme found in all eukaryotic cells. Topo II is involved in a number of cellular processes related to DNA metabolism, including DNA replication, recombination and the maintenance of genomic stability. We discovered a correlation between the development of postnatal testis and increased binding of topo IIalpha to the chromatin fraction. We used this observation to characterize DNA-binding specificity and catalytic properties of purified testis topo IIalpha. The results indicate that topo IIalpha binds a substrate containing the preferred site with greater affinity and, consequently, catalyzes the conversion of form I to form IV DNA more efficiently in contrast to substrates lacking such a site. Interestingly, topo IIalpha displayed high-affinity and cooperativity in binding to the scaffold associated region. In contrast to the preferred site, however, high-affinity binding of topo IIalpha to the scaffold-associated region failed to result in enhanced catalytic activity. Intriguingly, competition assays involving scaffold-associated region revealed an additional DNA-binding site within the dyadic topo IIalpha. These results implicate a dual role for topo IIalpha in vivo consistent with the notion that its sequestration to the chromatin might play a role in chromosome condensation and decondensation during spermatogenesis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work, Mode-I fracture experiments are conducted using notched compact tension specimens machined from a rolled AZ31 Mg alloy plate having near-basal texture with load applied along rolling direction (RD) and transverse direction (TD). Moderately high notched fracture toughness of J(C) similar to 46 N/mm is obtained in both RD and TD specimens. Fracture surface shows crack tunneling at specimen mid-thickness and extensive shear lips near the free surface. Dimples are observed from SEM fractographs suggesting ductile fracture. EBSD analysis shows profuse tensile twinning in the ligament ahead of the notch. It is shown that tensile twinning plays a dual role in enhancing the toughness in the notched fracture specimens with reduced triaxiality. It provides significant dissipation in the background plastic zone and imparts hardening to the material surrounding the fracture process zone via operation of several mechanisms which retards micro-void growth and coalescence. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Egyptian aquaculture industry provides more than 100,000 full-time or part-time jobs and produces the country’s least-expensive farmed animal protein. Thus, aquaculture plays an important role in both sustaining livelihoods and improving the diet quality and nutritional health of Egyptians, including a significant proportion of the 25.5% who are resource-poor. Recognizing this dual role, WorldFish has promoted sustainable growth in Egyptian aquaculture for more than 20 years. Through its work, WorldFish has identified a lack of quality data about fish consumption preferences and practices. Eager to fill this knowledge gap, WorldFish partnered with the Environment and Development Group (EDG) to study consumption of fish, red meat and poultry among the resource-poor in Egypt. This study aimed to characterize current consumer preferences for and consumption patterns of animal-source foods, comparing red meat, poultry and fish. The resulting data is meant to contribute to a better understanding of what drives demand for fish among the resource-poor in Egypt, allowing value chain actors to more successfully market their products to this segment of the population.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Animals faced with conflicting cues, such as predatory threat and a given rewarding stimulus, must make rapid decisions to engage in defensive versus other appetitive behaviors. The brain mechanisms mediating such responses are poorly understood. However, the periaqueductal gray (PAG) seems particularly suitable for accomplishing this task. The PAG is thought to have, at least, two distinct general roles on the organization of motivated responses, i.e., one on the execution of defensive and reproductive behaviors, and the other on the motivational drive underlying adaptive responses. We have presently examined how the PAG would be involved in mediating the behavioral choice between mutually incompatible behaviors, such as reproduction or defense, when dams are exposed to pups and cat odor. First, we established the behavioral protocol and observed that lactating rats, simultaneously exposed to pups and cat odor, inhibited maternal behavior and expressed clear defensive responses. We have further revealed that cat odor exposure up-regulated Fos expression in the dorsal PAG, and that NMDA cytotoxic lesions therein were able to restore maternal responses, and, at the same time, block defensive responsiveness to cat odor. Potential paths mediating the dorsal PAG influences on the inhibition of appetitive (i.e., retrieving behavior) and consummatory (i.e., nursing) maternal responses are discussed. Overall, we were able to confirm the dual role of the PAG, where, in the present case, the dorsal PAG, apart from organizing defensive responses, also appears to account for the behavioral inhibition of non-defensive responses. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Copper is essential for human health and copper imbalance is a key factor in the aetiology and pathology of several neurodegenerative diseases. The copper-transporting P-type ATPases, ATP7A and ATP7B are key molecules required for the regulation and maintenance of mammalian copper homeostasis. Their absence or malfunction leads to the genetically inherited disorders, Menkes and Wilson diseases, respectively. These proteins have a dual role in cells, namely to provide copper to essential cuproenzymes and to mediate the excretion of excess intracellular copper. A unique feature of ATP7A and ATP7B that is integral to these functions is their ability to sense and respond to intracellular copper levels, the latter manifested through their copper-regulated trafficking from the transGolgi network to the appropriate cellular membrane domain (basolateral or apical, respectively) to eliminate excess copper from the cell. Research over the last decade has yielded significant insight into the enzymatic properties and cell biology of the copper-ATPases. With recent advances in elucidating their localization and trafficking in human and animal tissues in response to physiological stimuli, we are progressing rapidly towards an integrated understanding of their physiological significance at the level of the whole animal. This knowledge in turn is helping to clarify the biochemical and cellular basis not only for the phenotypes conferred by individual Menkes and Wilson disease patient mutations, but also for the clinical variability of phenotypes associated with each of these diseases. Importantly, this information is also providing a rational basis for the applicability and appropriateness of certain diagnostic markers and therapeutic regimes. This overview will provide an update on the current state of our understanding of the localization and trafficking properties of the copper-ATPases in cells and tissues, the molecular signals and posttranslational interactions that govern their trafficking activities, and the cellular basis for the clinical phenotypes associated with disease-causing mutations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Public shaming and humiliation have been used across cultures for centuries to punish offenders and define the boundaries of acceptable behaviour for communities. This article argues that since court-imposed shaming sanctions were phased out in Australia, the news media has assumed responsibility for performing this cultural practice. Through critical engagement with some of the research literature on shaming, the historical shift to the media as the modern pillory is explored. This article looks beyond the doctrine of open justice, which assigns the news media a dual role as a watchdog against injustice and a conduit between the courts and the public, to consider its role in shaming and suggest this role continues to evolve in a changing media landscape.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

While it is understood that body composition impacts on physical conditions, such as diabetes and cardiovascular disease, it is only now apparent that body composition might play a role in the genesis of common mental disorders, depression and anxiety. Sarcopenia occurs in ageing and comprises a progressive decline in muscle mass, strength and function, leading to frailty, decreased independence and poorer quality of life. This review presents an emerging body of evidence to support the hypothesis that shared pathophysiological pathways for sarcopenia and the common mental disorders constitute links between skeletal muscle and brain function. Contracting skeletal muscle secretes neurotrophic factors that are known to play a role in mood and anxiety, and have the dual role of nourishing neuronal growth and differentiation, while protecting the size and number of motor units in skeletal muscle. Furthermore, skeletal muscle activity has important immune and redox effects that impact behaviour and reduce muscle catabolism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The proapoptotic Bcl-2 homolog Bim was shown to control the apoptosis of both T cells and hepatocytes. This dual role of Bim might be particularly relevant for the development of viral hepatitis, in which both the sensitivity of hepatocytes to apoptosis stimuli and the persistence of cytotoxic T cells are essential factors for the outcome of the disease. The relevance of Bim in regulating survival of cytotoxic T cells or induction of hepatocyte death has only been investigated in separate systems, and their relative contributions to the pathogenesis of T cell-mediated hepatitis remain unclear. Using the highly dynamic model system of lymphocytic choriomeningitis virus-mediated hepatitis and bone marrow chimeras, we found that Bim has a dual role in the development of lymphocytic choriomeningitis virus-induced, T cell-mediated hepatitis. Although the absence of Bim in parenchymal cells led to markedly attenuated liver damage, loss of Bim in the lymphoid compartment moderately enhanced hepatitis. However, when both effects were combined in Bim(-/-) mice, the effect of Bim deficiency in the lymphoid compartment was overcompensated for by the reduced sensitivity of Bim(-/-) hepatocytes to T cell-induced apoptosis, resulting in the protection of Bim(-/-) mice from hepatitis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Resistance to current chemo- and radiation therapy is the principal problem in anticancer treatment. Although intensively investigated, the therapeutic outcome is still far from satisfactory. Among the multiple factors which contribute to the drug resistance in cancer cells, the involvement of autophagy is becoming more and more evident. Autophagy describes a cellular self-digestion process, in which cytoplasmic elements can be selectively engulfed and finally degraded in autophagolysosomes to supply nutrients and building blocks for the cells. Autophagy controls cellular homeostasis and can be induced in response to stresses, like hypoxia and growth factor withdrawal. Since the essential physiological function of autophagy is to maintain cellular metabolic balance, dysregulated autophagy has been found associated with multiple diseases, including cancer. Interestingly, the role of autophagy in cancer is two-sided; it can be pro- or antitumor. Autophagy can suppress tumor formation, for example, by controlling cell proliferation and the production of reactive oxygen species. On the other hand, autophagy can provide nutrients to the tumor cells to support tumor growth under nutrition-limiting conditions, thereby promoting tumor development. This ambivalent behavior is also evident in anticancer therapy: By inducing autophagic cell death, autophagy has been shown to potentiate the cytotoxicity of chemotherapeutic drugs, but autophagy has also been linked to drug resistance, since inhibiting autophagy has been found to sensitize tumor cells toward anticancer drug-induced cell death. In this chapter, we will focus on the dual role of autophagy in tumorigenesis and chemotherapy, will classify autophagy inducers and inhibitors used in anticancer treatment, and will discuss topics related to future drug development which have arisen.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The RecA protein-single-stranded DNA (ssDNA) filament can bind a second DNA molecule. Binding of ssDNA to this secondary site shows specificity, in that polypyrimidinic DNA binds to the RecA protein-ssDNA filament with higher affinity than polypurinic sequences. The affinity of ssDNA, which is identical in sequence to that bound in the primary site, is not always greater than that of nonhomologous DNA. Moreover, this specificity of DNA binding does not depend on the sequence of the DNA bound to the RecA protein primary site. We conclude that the specificity reflects an intrinsic property of the secondary site of RecA protein rather than an interaction between DNa molecules within nucleoprotein filament--i.e., self-recognition. The secondary DNA binding site displays a higher affinity for ssDNA than for double-stranded DNA, and the binding of ssDNA to the secondary site strongly inhibits DNA strand exchange. We suggest that the secondary binding site has a dual role in DNA strand exchange. During the homology search, it binds double-stranded DNA weakly; upon finding local homology, this site binds, with higher affinity, the ssDNA strand that is displaced during DNA strand exchange. These characteristics facilitate homologous pairing, promote stabilization of the newly formed heteroduplex DNA, and contribute to the directionality of DNA strand exchange.