865 resultados para Dual Diffusion
Resumo:
Performing two tasks simultaneously often degrades performance of one or both tasks. While this dual-task interference is classically interpreted in terms of shared attentional resources, where two motor tasks are performed simultaneously interactions within primary motor cortex (i.e., activity-dependent coupling) may also be a contributing factor. In the present study TMS (transcranial magnetic stimulation) was used to examine the contribution of activity-dependent coupling to dual-task interference during concurrent performance of a bimanual coordination task and a discrete probe reaction time (RT) task involving the foot. Experiments 1 and 2 revealed that activity-dependent coupling within the leg corticomotor pathway was greater during dual-task performance than single-task performance, and this was associated with interference on the probe RT task (i.e., increased RT). Experiment 3 revealed that dual-task interference occurred regardless of whether the dual-task involved two motor tasks or a motor and cognitive task, however activity-dependent coupling was present only when a dual motor task was performed. This suggests that activity-dependent coupling is less detrimental to performance than attentional processes operating upstream of the corticomotor system. Finally, while prioritising the RT task reduced, but did not eliminate, dual-task interference the contribution of activity-dependent coupling to dual-task interference was not affected by task prioritisation. This suggests that although activity-dependent coupling may contribute to dual motor-task interference, attentional processes appear to be more important. It also suggests that activity-dependent coupling may not be subject to modulation by attentional processes. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The effect of lateralized practice on manual preference was investigated in right-handed children. Probing tasks required reaching and grasping a pencil at distinct eccentricities in the right and left hemifields (simple), and its transportation and insertion into a small hole (complex). During practice, the children experienced manipulative tasks different from that used for probing, using the left hand only. Results showed that before practice the children used almost exclusively the right hand in the right hemifield and at the midline position. Following lateralized practice frequency of use of the left hand increased in most lateral positions. A more evident effect of lateralized practice on shift of manual preference was detected in the complex task. Implications for lateralization of behavior in a developmental timescale are discussed on the basis of the proposition of amplification and diffusion of manual preference from lateralized practice. (C) 2010 Wiley Periodicals, Inc. Dev Psychobiol 52: 723-730, 2010.
Resumo:
This investigation presents a comprehensive characterization of magnetic and transport properties of an interesting superconducting wire, Nb-Ti -Ta, obtained through the solid-state diffusion between Nb-12 at.% Ta alloy and pure Ti. The physical properties obtained from magnetic and transport measurements related to the microstructure unambiguously confirmed a previous proposition that the superconducting currents flow in the center of the diffusion layer, which has a steep composition variation. The determination of the critical field also confirmed that the flux line core size is not constant, and in addition it was possible to determine that, in the center of the layer, the flux line core is smaller than at the borders. A possible core shape design is proposed. Among the wires studied, the one that presented the best critical current density was achieved for a diffusion layer with a composition of about Nb-32% Ti-10% Ta, obtained with a heat treatment at 700 degrees C during 120 h, in agreement with previous studies. It was determined that this wire has the higher upper critical field, indicating that the optimization of the superconducting behavior is related to an intrinsic property of the ternary alloy.
Resumo:
This paper deals with analysis of multiple random crack propagation in two-dimensional domains using the boundary element method (BEM). BEM is known to be a robust and accurate numerical technique for analysing this type of problem. The formulation adopted in this work is based on the dual BEM, for which singular and hyper-singular integral equations are used. We propose an iterative scheme to predict the crack growth path and the crack length increment at each time step. The proposed scheme able us to simulate localisation and coalescence phenomena, which is the main contribution of this paper. Considering the fracture mechanics analysis, the displacement correlation technique is applied to evaluate the stress intensity factors. The propagation angle and the equivalent stress intensity factor are calculated using the theory of maximum circumferential stress. Examples of simple and multi-fractured domains, loaded up to the rupture, are considered to illustrate the applicability of the proposed scheme. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
There are currently many types of protective materials for reinforced concrete structures and the influence of these materials in the chloride diffusion coefficient still needs more research. The aim of this paper is to study the efficacy of certain surface treatments (such as hydrophobic agents, acrylic coating, polyurethane coating and double systems) in inhibiting chloride penetration in concrete. The results indicated that all tested surface protection significantly reduced the sorptivity of concrete (reduction rate > 70%). However, only the polyurethane coating was highly effective in reducing the chloride diffusion coefficient (reduction rate of 86%). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The performance assessment as to water consumption in WC cisterns has contributed to the development of flushing system technologies, which allow smaller flushing volumes. The purpose of this work is to assess the performance of the the low water consumption requirement of WC cisterns with dual flushing system (6/3L), when compared to 6L flushing volume WC cisterns in multifamily buildings. The research methodology consisted of a case study in a multifamily residential building with submetering system, by monitoring the total water consumption and the two flushing systems using water meters installed in WC cisterns. By means of a mathematical model, a comparison of the design flowrate in the main branch was carried out considering the two types of WC cisterns. The results indicated that the water consumption in the 6L WC cistern was 20% in relation to the total domestic consumption, whereas the water consumption observed in the dual-flush WC cistern (6/3L) was 16%. The dual flushing system (6/3L) presented about 18% consumption reduction impact as compared to the 6 L system. The design flowrate values in the main branch, obtained by the mathematical model, were 0.35 L/s for systems with 6 L WC cistern and 0.34 L/s with dual-flush WC cistern (6/3 L), that is, a reduction of similar to 3%. Practical application: The knowledge of the performance in field of dual-flush WC cistern contributes to industry to improve this system and to users to aid their choice of technologies aimed at water conservation, and so assisting to the development of sustainable buildings.
Resumo:
In this technical note we consider the mean-variance hedging problem of a jump diffusion continuous state space financial model with the re-balancing strategies for the hedging portfolio taken at discrete times, a situation that more closely reflects real market conditions. A direct expression based on some change of measures, not depending on any recursions, is derived for the optimal hedging strategy as well as for the ""fair hedging price"" considering any given payoff. For the case of a European call option these expressions can be evaluated in a closed form.
Resumo:
Gene duplication followed by acquisition of specific targeting information and dual targeting were evolutionary strategies enabling organelles to cope with overlapping functions. We examined the evolutionary trend of dual-targeted single-gene products in Arabidopsis and rice genomes. The number of paralogous proteins encoded by gene families and the dual-targeted orthologous proteins were analysed. The number of dual-targeted proteins and the corresponding gene-family sizes were similar in Arabidopsis and rice irrespective of genome sizes. We show that dual targeting of methionine aminopeptidase, monodehydroascorbate reductase, glutamyl-tRNA synthetase, and tyrosyl-tRNA synthetase was maintained despite occurrence of whole-genome duplications in Arabidopsis and rice as well as a polyploidization followed by a diploidization event (gene loss) in the latter.
Resumo:
An approximate analytical technique employing a finite integral transform is developed to solve the reaction diffusion problem with Michaelis-Menten kinetics in a solid of general shape. A simple infinite series solution for the substrate concentration is obtained as a function of the Thiele modulus, modified Sherwood number, and Michaelis constant. An iteration scheme is developed to bring the approximate solution closer to the exact solution. Comparison with the known exact solutions for slab geometry (quadrature) and numerically exact solutions for spherical geometry (orthogonal collocation) shows excellent agreement for all values of the Thiele modulus and Michaelis constant.
Resumo:
Transient response of an adsorbing or non-adsorbing tracer injected as step or square pulse input in a diffusion cell with two flowing streams across the pellet is theoretically investigated in this paper. Exact solutions and the asymptotic solutions in the time domain and in three different limits are obtained by using an integral transform technique and a singular perturbation technique, respectively. Parametric dependence of the concentrations in the top and bottom chambers can be revealed by investigating the asymptotic solutions, which are far simpler than their exact counterpart. In the time domain investigation, it is found that the bottom-chamber concentration is very sensitive to the value of the macropore effective diffusivity. Therefore this concentration could be used to extract diffusivity by fitting in the time domain. The bottom-chamber concentration is also sensitive to flow rate, pellet length chamber volume and the type of input (step and square input).
Resumo:
We have measured the spatial diffusion of atoms in a three-dimensional sigma(+)-sigma(-) optical molasses over twenty milliseconds timescale, starting from the initial interaction of the atoms with the molasses. We find that the diffusion constants agree well with a linear model for these short time scales and also compare favourably to other studies of diffusion made over longer time scales. These measurements enable us to quantify the detection method known as freezing molasses. We discuss this method, for detecting and measuring the momentum distribution of cold atoms, which relies on the slow diffusion of atoms in optical molasses to produce a freeze-frame of the spatial distribution of the atoms. This method enables a longer interrogation interval, providing a greatly increased signal-to-noise ratio. (C) 1998 Elsevier Science B.V.
Resumo:
Our previous investigations of possible lung mechanisms underlying the effectiveness of nebulized morphine for the relief of dyspnoea, have shown a high density of non-conventional opioid binding sites in rat airways with similar binding characteristics (opioid alkaloid-sensitive, opioid peptide-insensitive) to that of putative mu(3)-opioid receptors on immune cells. To investigate whether these lung opioid binding sites are functional receptors, this study was designed to determine (using superfusion) whether morphine modulates the K+-evoked release of the pro-inflammatory neuropeptide, substance P (SP), from rat peripheral airways. Importantly, K+-evoked SP release was Ca2+-dependent, consistent with vesicular release. Submicromolar concentrations of morphine (1 and 200 nM) inhibited K+-evoked SP release from rat peripheral airways in a naloxone (1 mu M) reversible manner. By contrast, 1 mu M morphine enhanced K+-evoked SP release and this effect was not reversed by 1 mu M naloxone. However, 100 mu M naloxone not only antagonized the facilitatory effect of 1 mu M morphine on K+-evoked SP release from rat peripheral airways but it inhibited release to a similar extent as 200 nM morphine. It is possible that these latter effects are mediated by non-conventional opioid receptors located on mast cells, activation of which causes naloxone-reversible histamine release that in turn augments the release of SP from sensory nerve terminals in the peripheral airways. Clearly, further studies are required to investigate this possibility. (C) 1997 Academic Press Limited.
Resumo:
In the author's joint paper [HJS] with Jest and Struwe, we discuss asymtotic limits of a self-dual Ginzburg-Landau functional involving a section of a line bundle over a closed Riemann surface and a connection on this bundle. In this paper, the author generalizes the above results [HJS] to the case of bounded domains.
Resumo:
Molecular dynamics simulations of carbon atom depositions are used to investigate energy diffusion from the impact zone. A modified Stillinger-Weber potential models the carbon interactions for both sp2 and sp3 bonding. Simulations were performed on 50 eV carbon atom depositions onto the (111) surface of a 3.8 x 3.4 x 1.0 nm diamond slab containing 2816 atoms in 11 layers of 256 atoms each. The bottom layer was thermostated to 300 K. At every 100th simulation time step (27 fs), the average local kinetic energy, and hence local temperature, is calculated. To do this the substrate is divided into a set of 15 concentric hemispherical zones, each of thickness one atomic diameter (0.14 nm) and centered on the impact point. A 50-eV incident atom heats the local impact zone above 10 000 K. After the initial large transient (200 fs) the impact zone has cooled below 3000 K, then near 1000 K by 1 ps. Thereafter the temperature profile decays approximately as described by diffusion theory, perturbed by atomic scale fluctuations. A continuum model of classical energy transfer is provided by the traditional thermal diffusion equation. The results show that continuum diffusion theory describes well energy diffusion in low energy atomic deposition processes, at distance and time scales larger than 1.5 nm and 1-2 ps, beyond which the energy decays essentially exponentially. (C) 1998 Published by Elsevier Science S.A. All rights reserved.