992 resultados para Driven 2-level Atoms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the behavior of a two-level atom that is driven by a bichromatic field consisting of a strong resonant component and a weaker tunable component. In addition to the splitting of the energy levels (the multiphoton AC Stark effect), we find that the weaker component also shifts the subharmonic resonances, an effect we attribute to a dynamic Stark shift. When the weaker component is tuned to a shifted resonance, no fluorescence occurs at either the frequency of the strong component or the three-photon mixing frequency. Results are obtained with numerical techniques and explained in terms of the dressed-atom model of the system. (C) 1998 Optical Society of America [S0740-3224(98)01508-2] OCIS codes: 270.4180, 270.6620, 270.0270.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the effects of driving a two-level atom by two intense field modes that have equal frequencies but are otherwise distinguishable; the intensity of one mode is also assumed to be greater than that of the other. We calculate first the dressed states of the system, and then its resonance fluorescence and Autler-Townes absorption spectra. We find that the energy spectrum of the doubly dressed atom consists of a ladder of doublet continua. These continua manifest themselves in the fluorescence spectrum, where they produce continua at the positions of the Mellow sideband frequencies omega(L)+/-2 Omega of the strong field, and in the Autler-Townes absorption spectrum, which becomes a two-continuum doublet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The steady-state resonance fluorescence spectrum of a two-level atom driven by a bichromatic field in a broadband squeezed vacuum is studied. When the carrier frequency of the squeezed vacuum is tuned to the frequency of the central spectral line, anomalous spectral features, such as hole burning and dispersive profiles, can occur at the central line. We show that these features appear for wider, and experimentally more convenient, ranges of the parameters than in the case of monochromatic excitation. ?he absence of a coherent spectral component at the central line makes any experimental attempt to observe these features much easier. We also discuss the general features of the spectrum. When the carrier frequency of the squeezed vacuum is tuned to the first odd or even sidebands, the spectrum is asymmetric and only the sidebands an sensitive to phase. For appropriate choices of the phase the linewidths or only the odd or even sidebands can be reduced. A dressed-stale interpretation is provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the fluorescence spectrum of a two-level atom driven by a multiple amplitude-modulated field. The driving held is modeled as a polychromatic field composed of a strong central (resonant) component and a large number of symmetrically detuned sideband fields displaced from the central component by integer multiples of a constant detuning. Spectra obtained here differ qualitatively from those observed for a single pair of modulating fields [B. Blind, P.R. Fontana, and P. Thomann, J. Phys. B 13, 2717 (1980)]. In the case of a small number of the modulating fields, a multipeaked spectrum is obtained with the spectral features located at fixed frequencies that are independent of the number of modulating fields and their Rabi frequencies. As the number of the modulating fields increases, the spectrum ultimately evolves to the well-known Mellow triplet with the sidebands shifted from the central component by an effective Rabi frequency whose magnitude depends on the initial relative phases of the components of the driving held. For equal relative phases, the effective Rabi frequency of the driving field can be reduced to zero resulting in the disappearance of fluorescence spectrum, i.e., the atom can stop interacting with the field. When the central component and the modulating fields are 180 degrees out of phase, the spectrum retains its triplet structure with the sidebands located at frequencies equal to the sum of the Rabi frequencies of the component of the driving field. Moreover, we shaw that the frequency of spontaneous emission can be controlled and switched from one frequency to another when the Rabi frequency or initial phase of the modulating fields are varied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss the problem of creation of entangled states in a system of two two-level atoms which are separated by an arbitrary distance r(12) and interact with each other via the dipole-dipole interaction and both are driven by a laser field. The entangled antisymmetric state of the system is included throughout, even for small inter-atomic separations. Different mechanisms leading to effective transfer of population to the antisymmetric state are identified. The steady-state values of concurrence which is a measure of entanglement are calculated showing that perfect entanglement can be reached in case of two non-identical atoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study a mixture of two light spin-1/2 fermionic atoms and two heavy atoms in a double-well potential. Inelastic scattering processes between both atomic species excite the heavy atoms and renormalize the tunneling rate and the interaction of the light atoms (polaron effect). The effective interaction of the light atoms changes its sign and becomes attractive for strong inelastic scattering. This is accompanied by a crossing of the energy levels from singly occupied sites at weak inelastic scattering to a doubly occupied and an empty site for stronger inelastic scattering. We are able to identify the polaron effect and the level crossing in the quantum dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the index of refraction of a two-level atom replacing the usually applied coherent driving fields by a squeezed vacuum field. This system can produce a large index of refraction accompanied by vanishing absorption when the carrier frequency of the squeezed vacuum is detuned from the atomic resonance. (C) 1998 Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stationary lineshape of a two-level atom driven by low-intensity narrow-bandwidth squeezed light is shown to exhibit significant differences in behaviour compared to the lineshape for broadband squeezed light. We find that for narrow-bandwidth squeezed light the lineshape is composed of two Lorentzians whose amplitudes depend on the squeezing correlations. Moreover, one of the Lorentzians has a negative weight which leads to narrowing of the line. These features are absent in the broadband case, where the stationary lineshape is the same as for a thermal field. (C) 1998 Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Mellow and Autler-Townes probe absorption spectra of a three-level atom in a cascade configuration with the lower transition coherently driven and also coupled to a narrow bandwidth squeezed-vacuum field are studied. Analytical studies of the modifications caused by the finite squeezed-vacuum bandwidth to the spectra are made for the case when the Rabi frequency of the driving field is much larger than the natural linewidth. The squeezed vacuum center frequency and the driving laser frequency are assumed equal. We show that the spectral features depend on the bandwidth of a squeezed vacuum field and whether the sources of the squeezing field are degenerate (DPA) or nondegenerate (NDPA) parametric amplifiers. In a broadband or narrow bandwidth squeezed vacuum generated by a NDPA, the central component of the Mellow spectrum can be significantly narrower than that in the normal vacuum. When the source of the squeezed vacuum is a DPA, the central feature is insensitive to squeezing. The Rabi sidebands, however, can be significantly narrowed only in the squeezed vacuum produced by the DPA. The two lines of the Autler-Townes absorption spectrum can be narrowed only in a narrow bandwidth squeezed vacuum, whereas they are independent of the phase and are always broadened in a broadband squeezed vacuum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The resonance fluorescence of a two-level atom driven by a coherent laser field and damped by a finite bandwidth squeezed vacuum is analysed. We extend the Yeoman and Barnett technique to a non-zero detuning of the driving field from the atomic resonance and discuss the role of squeezing bandwidth and the detuning in the level shifts, widths and intensities of the spectral lines. The approach is valid for arbitrary values of the Rabi frequency and detuning but for the squeezing bandwidths larger than the natural linewidth in order to satisfy the Markoff approximation. The narrowing of the spectral lines is interpreted in terms of the quadrature-noise spectrum. We find that, depending on the Rabi frequency, detuning and the squeezing phase, different factors contribute to the line narrowing. For a strong resonant driving field there is no squeezing in the emitted field and the fluorescence spectrum exactly reveals the noise spectrum. In this case the narrowing of the spectral lines arises from the noise reduction in the input squeezed vacuum. For a weak or detuned driving field the fluorescence exhibits a large squeezing and, as a consequence, the spectral lines have narrowed linewidths. Moreover, the fluorescence spectrum can be asymmetric about the central frequency despite the symmetrical distribution of the noise. The asymmetry arises from the absorption of photons by the squeezed vacuum which reduces the spontaneous emission. For an appropriate choice of the detuning some of the spectral lines can vanish despite that there is no population trapping. Again this process can be interpreted as arising from the absorption of photons by the squeezed vacuum. When the absorption is large it may compensate the spontaneous emission resulting in the vanishing of the fluorescence lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present numerical and analytical results for the Mollow probe absorption spectrum of a coherently driven two-level system in a narrow bandwidth squeezed vacuum field. The spectra are calculated for the case where the Rabi frequency of the driving field is much larger than the natural linewidth and the squeezed vacuum carrier frequency is detuned from the driving laser frequency. The driving laser is on resonance. We show that in a detuned squeezed vacuum the standard Mellow features are each split into triplets. The central components of each triplet are weakly dependent on the squeezing phase but the sidebands strongly depend on the phase and can have dispersive or absorptive/emissive profiles. We also derive approximate analytical expressions for the spectral features and find that the multi-peak structure of the spectrum can be interpreted either via the eigenfrequencies of a generalized Floquet Hamiltonian or in terms of three-photon transitions between dressed stales involving a probe field photon and a correlated photon pair from the squeezed vacuum field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the coupled-system approach we calculate the optical spectra of the fluorescence and transmitted fields of a two-level atom driven by a squeezed vacuum of bandwidths smaller than the natural atomic linewidth. We find that in this regime of squeezing bandwidths the spectra exhibit unique features, such as a hole burning and a three-peak structure, which do not appear for a broadband excitation. We show that the features are unique to the quantum nature of the driving squeezed vacuum field and donor appear when the atom is driven by a classically squeezed field. We find that a quantum squeezed-vacuum field produces squeezing in the emitted fluorescence field which appears only in the squeezing spectrum while there is no squeezing in the total field. We also discuss a nonresonant excitation and find that depending on the squeezing bandwidth there is a peak or a hole in the spectrum at a frequency corresponding to a three-wave-mixing process. The hole appears only for a broadband excitation and results from the strong correlations between squeezed-vacuum photons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We calculate the stationary state of the system of two non-identical two-level atoms driven by a finite-bandwidth two-mode squeezed vacuum. It is well known that two identical two-level atoms driven by a broadband squeezed vacuum may decay to a pure state, called the pure two-atom squeezed state, and that the presence of the antisymmetric state can change its purity. Here, we show that for small interatomic separations the stationary state of two non-identical atoms is not sensitive to the presence of the antisymmetric state and is the pure two-atom squeezed state. This effect is a consequence of the fact that in the system of two non-identical atoms the antisymmetric state is no longer the trapping state. We also calculate the squeezing properties of the emitted field and find that the squeezing spectrum of the output field may exhibit larger squeezing than that in the input squeezed vacuum. Moreover, we show that squeezing in the total field attains the optimum value which can ever be achieved in the field emitted by two atoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Under the conditions of the rotating wave approximation (RWA), a transition strongly driven by a resonant oscillating field displays the well known symmetric Autler-Townes doublet. However, if the counter-rotating component, neglected in the RWA, is taken into account, the Bloch-Siegert shift gives rise to an Autler-Townes doublet of unequal intensity even in the case of a resonant driving field. This effect is investigated theoretically in a V-shaped three-level double-resonance configuration and the results are presented in this paper. An interesting observation is that the level of asymmetry not only depends on the driving-field intensity but also on the characteristics of the driven system including relaxation rates and equilibrium population distributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The time evolution of the populations of the collective states of a two-atom system in a squeezed vacuum can exhibit quantum beats. We show that the effect appears only when the carrier frequency of the squeezed field is detuned from the atomic resonance. Moreover, we find that the quantum beats are not present for the case in which the two-photon correlation strength is the maximum possible for a field with a classical analog. We also show that the population inversion between the excited collective states, found for the resonant squeezed vacuum, is sensitive to the detuning and the two-photon correlations. For large detunings or a field with a classical analog there is no inversion between the collective states. Observation of the quantum beats or the population inversion would confirm the essentially quantum-mechanical nature of the squeezed vacuum. (C) 1997 Optical Society of America.