978 resultados para Doppler study
Resumo:
Objectives The primary objective of this research was to investigate wound management nurse practitioner (WMNP) models of service for the purposes of identifying parameters of practice and how patient outcomes are measured. Methods A scoping study was conducted with all authorised WMNPs in Australia from October to December 2012 using survey methodology. A questionnaire was developed to obtain data on the role and practice parameters of authorised WMNPs in Australia. The tool comprised seven sections and included a total of 59 questions. The questionnaire was distributed to all members of the WMNP Online Peer Review Group, to which it was anticipated the majority of WMNPs belonged. Results Twenty-one WMNPs responded (response rate 87%), with the results based on a subset of respondents who stated that, at the time of the questionnaire, they were employed as a WMNP, therefore yielding a response rate of 71% (n≤15). Most respondents (93%; n≤14) were employed in the public sector, with an average of 64 occasions of service per month. The typical length of a new case consultation was 60min, with 32min for follow ups. The most frequently performed activity was wound photography (83%; n≤12), patient, family or carer education (75%; n≤12), Doppler ankle-brachial pressure index assessment (58%; n≤12), conservative sharp wound debridement (58%; n≤12) and counselling (50%; n≤12). The most routinely prescribed medications were local anaesthetics (25%; n≤12) and oral antibiotics (25%; n≤12). Data were routinely collected by 91% of respondents on service-related and wound-related parameters to monitor patient outcomes, to justify and improve health services provided. Conclusion This study yielded important baseline information on this professional group, including data on patient problems managed, the types of interventions implemented, the resources used to accomplish outcomes and how outcomes are measured.
Resumo:
In an estuary, mixing and dispersion result from a combination of large-scale advection and smallscale turbulence, which are complex to estimate. The predictions of scalar transport and mixing are often inferred and rarely accurate, due to inadequate understanding of the contributions of these difference scales to estuarine recirculation. A multi-device field study was conducted in a small sub-tropical estuary under neap tide conditions with near-zero fresh water discharge for about 48 hours. During the study, acoustic Doppler velocimeters (ADV) were sampled at high frequency (50 Hz), while an acoustic Doppler current profiler (ADCP) and global positioning system (GPS) tracked drifters were used to obtain some lower frequency spatial distribution of the flow parameters within the estuary. The velocity measurements were complemented with some continuous measurement of water depth, conductivity, temperature and some other physiochemical parameters. Thorough quality control was carried out by implementation of relevant error removal filters on the individual data set to intercept spurious data. A triple decomposition (TD) technique was introduced to access the contributions of tides, resonance and ‘true’ turbulence in the flow field. The time series of mean flow measurements for both the ADCP and drifter were consistent with those of the mean ADV data when sampled within a similar spatial domain. The tidal scale fluctuation of velocity and water level were used to examine the response of the estuary to tidal inertial current. The channel exhibited a mixed type wave with a typical phase-lag between 0.035π– 0.116π. A striking feature of the ADV velocity data was the slow fluctuations, which exhibited large amplitudes of up to 50% of the tidal amplitude, particularly in slack waters. Such slow fluctuations were simultaneously observed in a number of physiochemical properties of the channel. The ensuing turbulence field showed some degree of anisotropy. For all ADV units, the horizontal turbulence ratio ranged between 0.4 and 0.9, and decreased towards the bed, while the vertical turbulence ratio was on average unity at z = 0.32 m and approximately 0.5 for the upper ADV (z = 0.55 m). The result of the statistical analysis suggested that the ebb phase turbulence field was dominated by eddies that evolved from ejection type process, while that of the flood phase contained mixed eddies with significant amount related to sweep type process. Over 65% of the skewness values fell within the range expected of a finite Gaussian distribution and the bulk of the excess kurtosis values (over 70%) fell within the range of -0.5 and +2. The TD technique described herein allowed the characterisation of a broader temporal scale of fluctuations of the high frequency data sampled within the durations of a few tidal cycles. The study provides characterisation of the ranges of fluctuation required for an accurate modelling of shallow water dispersion and mixing in a sub-tropical estuary.
Resumo:
The short duration of the Doppler signal and noise content in it necessitate a validation scheme to be incorporated in the electronic processor used for frequency measurement, There are several different validation schemes that can be employed in period timing devices. A detailed study of the influence of these validation schemes on the measured frequency has been reported here. These studies were carried out by using a combination of a fast A/D converter and computer. Doppler bursts obtained from an air flow were digitised and stored on magnetic discs. Suitable computer programs were then used to simulate the performance of period timing devices with different validation schemes and the frequency of the stored bursts were evaluated. It is found that best results are obtained when the validation scheme enables frequency measurement to be made over a large number of cycles within the burst.
Resumo:
Background: The incidence of all forms of congenital heart defects is 0.75%. For patients with congenital heart defects, life-expectancy has improved with new treatment modalities. Structural heart defects may require surgical or catheter treatment which may be corrective or palliative. Even those with corrective therapy need regular follow-up due to residual lesions, late sequelae, and possible complications after interventions. Aims: The aim of this thesis was to evaluate cardiac function before and after treatment for volume overload of the right ventricle (RV) caused by atrial septal defect (ASD), volume overload of the left ventricle (LV) caused by patent ductus arteriosus (PDA), and pressure overload of the LV caused by coarctation of the aorta (CoA), and to evaluate cardiac function in patients with Mulibrey nanism. Methods: In Study I, of the 24 children with ASD, 7 underwent surgical correction and 17 percutaneous occlusion of ASD. Study II had 33 patients with PDA undergoing percutaneous occlusion. In Study III, 28 patients with CoA underwent either surgical correction or percutaneous balloon dilatation of CoA. Study IV comprised 26 children with Mulibrey nanism. A total of 76 healthy voluntary children were examined as a control group. In each study, controls were matched to patients. All patients and controls underwent clinical cardiovascular examinations, two-dimensional (2D) and three-dimensional (3D) echocardiographic examinations, and blood sampling for measurement of natriuretic peptides prior to the intervention and twice or three times thereafter. Control children were examined once by 2D and 3D echocardiography. M-mode echocardiography was performed from the parasternal long axis view directed by 2D echocardiography. The left atrium-to-aorta (LA/Ao) ratio was calculated as an index of LA size. The end-diastolic and end-systolic dimensions of LV as well as the end-diastolic thicknesses of the interventricular septum and LV posterior wall were measured. LV volumes, and the fractional shortening (FS) and ejection fraction (EF) as indices of contractility were then calculated, and the z scores of LV dimensions determined. Diastolic function of LV was estimated from the mitral inflow signal obtained by Doppler echocardiography. In three-dimensional echocardiography, time-volume curves were used to determine end-diastolic and end-systolic volumes, stroke volume, and EF. Diastolic and systolic function of LV was estimated from the calculated first derivatives of these curves. Results: (I): In all children with ASD, during the one-year follow-up, the z score of the RV end-diastolic diameter decreased and that of LV increased. However, dilatation of RV did not resolve entirely during the follow-up in either treatment group. In addition, the size of LV increased more slowly in the surgical subgroup but reached control levels in both groups. Concentrations of natriuretic peptides in patients treated percutaneously increased during the first month after ASD closure and normalized thereafter, but in patients treated surgically, they remained higher than in controls. (II): In the PDA group, at baseline, the end-diastolic diameter of LV measured over 2SD in 5 of 33 patients. The median N-terminal pro-brain natriuretic peptide (proBNP) concentration before closure measured 72 ng/l in the control group and 141 ng/l in the PDA group (P = 0.001) and 6 months after closure measured 78.5 ng/l (P = NS). Patients differed from control subjects in indices of LV diastolic and systolic function at baseline, but by the end of follow-up, all these differences had disappeared. Even in the subgroup of patients with normal-sized LV at baseline, the LV end-diastolic volume decreased significantly during follow-up. (III): Before repair, the size and wall thickness of LV were higher in patients with CoA than in controls. Systolic blood pressure measured a median 123 mm Hg in patients before repair (P < 0.001) and 103 mm Hg one year thereafter, and 101 mm Hg in controls. The diameter of the coarctation segment measured a median 3.0 mm at baseline, and 7.9 at the 12-month (P = 0.006) follow-up. Thicknesses of the interventricular septum and posterior wall of the LV decreased after repair but increased to the initial level one year thereafter. The velocity time integrals of mitral inflow increased, but no changes were evident in LV dimensions or contractility. During follow-up, serum levels of natriuretic peptides decreased correlating with diastolic and systolic indices of LV function in 2D and 3D echocardiography. (IV): In 2D echocardiography, the interventricular septum and LV posterior wall were thicker, and velocity time integrals of mitral inflow shorter in patients with Mulibrey nanism than in controls. In 3D echocardiography, LV end-diastolic volume measured a median 51.9 (range 33.3 to 73.4) ml/m² in patients and 59.7 (range 37.6 to 87.6) ml/m² in controls (P = 0.040), and serum levels of ANPN and proBNP a median 0.54 (range 0.04 to 4.7) nmol/l and 289 (range 18 to 9170) ng/l, in patients and 0.28 (range 0.09 to 0.72) nmol/l (P < 0.001) and 54 (range 26 to 139) ng/l (P < 0.001) in controls. They correlated with several indices of diastolic LV function. Conclusions (I): During the one-year follow-up after the ASD closure, RV size decreased but did not normalize in all patients. The size of the LV normalized after ASD closure but the increase in LV size was slower in patients treated surgically than in those treated with the percutaneous technique. Serum levels of ANPN and proBNP were elevated prior to ASD closure but decreased thereafter to control levels in patients treated with the percutaneous technique but not in those treated surgically. (II): Changes in LV volume and function caused by PDA disappeared by 6 months after percutaneous closure. Even the children with normal-sized LV benefited from the procedure. (III): After repair of CoA, the RV size and the velocity time integrals of mitral inflow increased, and serum levels of natriuretic peptides decreased. Patients need close follow-up, despite cessation of LV pressure overload, since LV hypertrophy persisted even in normotensive patients with normal growth of the coarctation segment. (IV): In children with Mulibrey nanism, the LV wall was hypertrophied, with myocardial restriction and impairment of LV function. Significant correlations appeared between indices of LV function, size of the left atrium, and levels of natriuretic peptides, indicating that measurement of serum levels of natriuretic peptides can be used in the clinical follow-up of this patient group despite its dependence on loading conditions.
Resumo:
Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive disorder in which the cardinal symptoms arise from exocrine pancreatic insufficiency and bone marrow dysfunction. Previous studies have suggested increased risk of fatal complications among Finnish SDS infants. The genetic defect responsible for the disease was recently identified; the SBDS gene is located at chromosome 7q11 and encodes a protein that is involved in ribosome biosynthesis. The discovery of the SBDS gene has opened new insights into the pathogenesis of this multi-organ disease. This study aimed to assess phenotypic and genotypic features of Finnish patients with SDS. Seventeen Finnish patients with a clinical diagnosis of SDS were included in the study cohort. Extensive clinical, biochemical and imaging assessments were performed to elucidate the phenotypic features, and the findings were correlated with the SBDS genotype. Imaging studies included abdominal magnetic reso-nance imaging (MRI), brain MRI, cardiac echocardiography including tissue Doppler examination, and cardiac MRI. The skeletal phenotype was assessed by dual-energy X-ray absorptiometry and bone histomorphometry. Twelve patients had mutations in the SBDS gene. In MRI, a characteristic pattern of fat-replaced pancreas with occasional enhancement of scattered parenchymal foci and of pancreatic duct was noted in the SBDS mutation-positive patients while the mutation-negative patients did not have pancreatic fat accumulation. The patients with SBDS mutations had significantly reduced bone mineral density associated with low-energy peripheral fractures and vertebral compression fractures. Bone histomorphometry confirmed low-turnover osteoporosis. The patients with SBDS mutations had learning difficulties and smaller head size and brain volume than control subjects. Corpus callosum, cerebellar vermis, and pos-terior fossa structures were significantly smaller in SDS patients than in controls. Patients with SDS did not have evidence of clinical heart disease or myocardial fibrosis. However, subtle diastolic changes in the right ventricle and exercise-induced changes in the left ventricle contractile reserve were observed. This study expanded the phenotypic features of SDS to include primary low-turnover osteoporosis and structural alterations in the brain. Pancreatic MRI showed characteristic changes in the SBDS mutation-positive patients while these were absent in the mutation-negative patients, suggesting that MRI can be used to differentiate patients harbouring SBDS mutations from those without mutations. No evidence for clinical cardiac manifestations was found, but imaging studies revealed slightly altered myocardial function that may have clinical implications. These findings confirm the pleiotropic nature of SDS and underscore the importance of careful multidisciplinary follow-up of the affected individuals.
Resumo:
In this study, we derive a fast, novel time-domain algorithm to compute the nth-order moment of the power spectral density of the photoelectric current as measured in laser-Doppler flowmetry (LDF). It is well established that in the LDF literature these moments are closely related to fundamental physiological parameters, i.e. concentration of moving erythrocytes and blood flow. In particular, we take advantage of the link between moments in the Fourier domain and fractional derivatives in the temporal domain. Using Parseval's theorem, we establish an exact analytical equivalence between the time-domain expression and the conventional frequency-domain counterpart. Moreover, we demonstrate the appropriateness of estimating the zeroth-, first- and second-order moments using Monte Carlo simulations. Finally, we briefly discuss the feasibility of implementing the proposed algorithm in hardware.
Guided Wave based Damage Detection in a Composite T-joint using 3D Scanning Laser Doppler Vibrometer
Resumo:
Composite T-joints are commonly used in modern composite airframe, pressure vessels and piping structures, mainly to increase the bending strength of the joint and prevents buckling of plates and shells, and in multi-cell thin-walled structures. Here we report a detailed study on the propagation of guided ultrasonic wave modes in a composite T-joint and their interactions with delamination in the co-cured co-bonded flange. A well designed guiding path is employed wherein the waves undergo a two step mode conversion process, one is due to the web and joint filler on the back face of the flange and the other is due to the delamination edges close to underneath the accessible surface of the flange. A 3D Laser Doppler Vibrometer is used to obtain the three components of surface displacements/velocities of the accessible face of the flange of the T-joint. The waves are launched by a piezo ceramic wafer bonded on to the back surface of the flange. What is novel in the proposed method is that the location of any change in material/geometric properties can be traced by computing a frequency domain power flow along a scan line. The scan line can be chosen over a grid either during scan or during post-processing of the scan data off-line. The proposed technique eliminates the necessity of baseline data and disassembly of structure for structural interrogation.
Guided-wave-based damage detection in a composite T-joint using 3D scanning laser Doppler vibrometer
Resumo:
Composite T-joints are commonly used in modern composite airframe, pressure vessels and piping structures, mainly to increase the bending strength of the joint and prevents buckling of plates and shells, and in multi-cell thin-walled structures. Here we report a detailed study on the propagation of guided ultrasonic wave modes in a composite T-joint and their interactions with delamination in the co-cured co-bonded flange. A well designed guiding path is employed wherein the waves undergo a two step mode conversion process, one is due to the web and joint filler on the back face of the flange and the other is due to the delamination edges close to underneath the accessible surface of the flange. A 3D Laser Doppler Vibrometer is used to obtain the three components of surface displacements/velocities of the accessible face of the flange of the T-joint. The waves are launched by a piezo ceramic wafer bonded on to the back surface of the flange. What is novel in the proposed method is that the location of any change in material/geometric properties can be traced by computing a frequency domain power flow along a scan line. The scan line can be chosen over a grid either during scan or during post-processing of the scan data off-line. The proposed technique eliminates the necessity of baseline data and disassembly of structure for structural interrogation.
Resumo:
Experimental demonstrations and theoretical analyses of a new electromechanical energy conversion process which is made feasible only by the unique properties of superconductors are presented in this dissertation. This energy conversion process is characterized by a highly efficient direct energy transformation from microwave energy into mechanical energy or vice versa and can be achieved at high power level. It is an application of a well established physical principle known as the adiabatic theorem (Boltzmann-Ehrenfest theorem) and in this case time dependent superconducting boundaries provide the necessary interface between the microwave energy on one hand and the mechanical work on the other. The mechanism which brings about the conversion is another known phenomenon - the Doppler effect. The resonant frequency of a superconducting resonator undergoes continuous infinitesimal shifts when the resonator boundaries are adiabatically changed in time by an external mechanical mechanism. These small frequency shifts can accumulate coherently over an extended period of time to produce a macroscopic shift when the resonator remains resonantly excited throughout this process. In addition, the electromagnetic energy in s ide the resonator which is proportional to the oscillation frequency is al so accordingly changed so that a direct conversion between electromagnetic and mechanical energies takes place. The intrinsically high efficiency of this process is due to the electromechanical interactions involved in the conversion rather than a process of thermodynamic nature and therefore is not limited by the thermodynamic value.
A highly reentrant superconducting resonator resonating in the range of 90 to 160 MHz was used for demonstrating this new conversion technique. The resonant frequency was mechanically modulated at a rate of two kilohertz. Experimental results showed that the time evolution of the electromagnetic energy inside this frequency modulated (FM) superconducting resonator indeed behaved as predicted and thus demonstrated the unique features of this process. A proposed usage of FM superconducting resonators as electromechanical energy conversion devices is given along with some practical design considerations. This device seems to be very promising in producing high power (~10W/cm^3) microwave energy at 10 - 30 GHz.
Weakly coupled FM resonator system is also analytically studied for its potential applications. This system shows an interesting switching characteristic with which the spatial distribution of microwave energies can be manipulated by external means. It was found that if the modulation was properly applied, a high degree (>95%) of unidirectional energy transfer from one resonator to the other could be accomplished. Applications of this characteristic to fabricate high efficiency energy switching devices and high power microwave pulse generators are also found feasible with present superconducting technology.
Resumo:
O contexto do estudo é a predição da anemia fetal em gestantes portadoras da doença hemolítica perinatal e tem como objetivo avaliar a acurácia da medida doppler velocimétrica da velocidade máxima do pico sistólico da artéria cerebral média na detecção da anemia fetal na doença hemolítica perinatal. A identificação dos estudos foi realizada com a adoção de bancos de dados gerais (MEDLINE e LILACS) e a partir de referências bibliográficas de outros autores. Os estudos selecionados tinham como critérios serem do tipo observacionais, com gestantes apresentando coombs indireto maior do que 1:8, técnica de insonação do vaso adequada, Vmax-ACM ≥ 1,5MOM, presença obrigatória de comparação com o padrão-ouro (hemoglobina fetal e/ou neonatal), e nível de evidência diagnóstica acima ou igual a 4. Os dados dos estudos selecionados foram alocados em tabelas 2x2 comparando o resultado do teste com o padrão-ouro. A acurácia diagnóstica foi expressa principalmente através da razão de verossimilhança. A revisão incluiu onze estudos, com uma amostra total de 688. Três estudos apresentaram delineamento do tipo prospectivo e nível de evidência diagnóstica categoria 1. A performance do teste em questão apresentou variação razoável. O estudo de Mari et al (2000) foi considerado o de melhor qualidade metodológica, apresentando uma RV(+) de 8,45 e uma RV(-) de 0,02. A medida do doppler da Vmax da ACM como preditor da anemia fetal na doença hemolítica perinatal está consolidada. Porém, alguns pontos precisam ser melhor esclarecidos, como o intervalo ideal dos exames em casos graves e a validade do método em fetos que já foram submetidos a transfusões intra-uterinas.
Resumo:
A hanseníase é uma doença infecciosa com características únicas, dentre elas o fato de atingir intensamente a inervação da pele e seus anexos. Entremeando estes anexos, está a microcirculação cutânea, que a principio também tem sua inervação comprometida. Vários artigos apontam para alterações de disautonomiamicrocirculatória. O presente estudo se propõe a avaliar a microcirculação cutânea na hanseníase tuberculóide. Utilizamos a videomicroscopia de campo escuro (Microscan), a análise de Fourier do sinal do laser Doppler para estudo da vasomotricidade e o laser Doppler fluxometria associado à iontoforese de substâncias vasoativas (acetilcolina e nitroprussiato de sódio) para avaliação da reatividade vascular. Sete pacientes portadores de hanseníase tuberculóide, sem outras co-morbidades que pudessem alterar os parâmetros microcirculatórios, foram avaliados pelos métodos descritos e seus resultados foram comparados, com controles realizados nos próprios pacientes em área contralateral com pele sã. Em relação à vasomotricidade foi observada alteração estatisticamente significativa entre os grupos, apenas no componente endotelial. Em relação à iontoforese de substâncias vasoativas não se constatou diferenças entre as manchas e os controles. No Microscan, observamos as maiores alterações. Os resultados apresentados sugerem que, provavelmente devido à alteração inervatória decorrente da hanseníase tuberculóide, estes pacientes apresentam uma alteração quantitativa de vasos e também da reatividade vascular da microcirculação cutânea.
Resumo:
This paper describes a fundamental experimental study of the flow structure around a single three-dimensional (3D) transonic shock control bump (SCB) mounted on a flat surface in a wind tunnel. Tests have been carried out with a Mach 1.3 normal shock wave located at a number of streamwise positions relative to the SCB. Details of the flow have been studied using the experimental techniques of schlieren photography, surface oil flow visualization, pressure sensitive paint, and laser Doppler anemometry. The results of the work build on the findings of previous researchers and shed new light on the flow physics of 3D SCBs. It is found that spanwise pressure gradients across the SCB ramp and the shape of the SCB sides affect the magnitude and uniformity of flow turning generated by the bump, which can impact on the spanwise propagation of the quasi-two-dimensional (2D) shock structure produced by a 3DSCB. At the bump crest, vortices can form if the pressure on the crest is significantly lower than at either side of the bump. The trajectories of these vortices, which are relatively weak, are strongly influenced by any spanwise pressure gradients across the bump tail. Asignificant difference between 2D and 3D SCBs highlighted by the study is the impact of spanwise pressure gradients on 3D SCB performance. The magnitude of these spanwise pressure gradients is determined largely by SCB geometry and shock position. Copyright © 2011 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
Positron-annihilation lifetime and positron-annihilation Doppler-broadening (PADB) spectroscopies have been employed to investigate the formation of vacancy-type compensation defects in n-type undoped liquid encapsulated Czochrolski grown InP, which undergoes conduction-type conversions under high temperature annealing. N-type InP becomes p-type semiconducting by short time annealing at 700 degreesC, and then turns into n-type again after further annealing but with a much higher resistivity. Long time annealing at 950 degreesC makes the material semi-insulating. Positron lifetime measurements show that the positron average lifetime tau(av) increases from 245 ps to a higher value of 247 ps for the first n-type to p-type conversion and decreases to 240 ps for the ensuing p-type to n-type conversion. The value of tau(av) increases slightly to 242 ps upon further annealing and attains a value of 250 ps under 90 h annealing at 950 degreesC. These results together with those of PADB measurements are explained by the model proposed in our previous study. The correlation between the characteristics of positron annihilation and the conversions of conduction type indicates that the formation of vacancy-type defects and the progressive variation of their concentrations during annealing are related to the electrical properties of the bulk InP material. (C) 2002 American Institute of Physics.
Resumo:
The objective of the study is to investigate the suitability of using Pulse-coherent Acoustic Doppler Profiler (PCADP) to estimate suspended sediment concentration (SSC). The acoustic backscatter intensity was corrected for spreading and absorption loss, then calibrated with OBS and finally converted to SSC. The results show that there is a good correlation between SSC and backscatter intensity with R value of 0.74. The mean relative error is 22.4%. Then the time span of little particle size variation was also analyzed to exclude the influence of size variation. The correlation coefficient increased to 0.81 and the error decreased to 18.9%. Our results suggest that the PCADP can meet the requirement of other professional instruments to estimate SSC with the errors between 20% and 50%, and can satisfy the need of dynamics study of suspended particles.
Resumo:
Based on in-situ time series data from the acoustic Doppler current profiler (ADCP) and thermistor chain in Wenchang area, a sequence of internal solitary wave (ISW) packets was observed in September 2005, propagating northwest on the continental shelf of the northwestern South China Sea (SCS). Corresponding to different stratification of the water column and tidal condition, both elevation and depression ISWs were observed at the same mooring location with amplitude of 35 m and 25 m respectively in different days. Regular arrival of the remarkable ISW packets at approximately the diurnal tidal period and the dominance of diurnal internal waves in the study area, strongly suggest that the main energy source of the waves is the diurnal tide. Notice that the wave packets were all riding on the troughs and shoulders of the internal tides, they were probably generated locally from the shelf break by the evolution of the internal tides due to nonlinear and dispersive effects.