945 resultados para Domotica open-hardware open Raspberry Pi Arduino NFC
Resumo:
La gestión del conocimiento (KM) es el proceso de recolectar datos en bruto para su análisis y filtrado, con la finalidad de obtener conocimiento útil a partir de dichos datos. En este proyecto se pretende hacer un estudio sobre la gestión de la información en las redes de sensores inalámbricos como inicio para sentar las bases para la gestión del conocimiento en las mismas. Las redes de sensores inalámbricos (WSN) son redes compuestas por sensores (también conocidos como motas) distribuidos sobre un área, cuya misión es monitorizar una o varias condiciones físicas del entorno. Las redes de sensores inalámbricos se caracterizan por tener restricciones de consumo para los sensores que utilizan baterías, por su capacidad para adaptarse a cambios y ser escalables, y también por su habilidad para hacer frente a fallos en los sensores. En este proyecto se hace un estudio sobre la gestión de la información en redes de sensores inalámbricos. Se comienza introduciendo algunos conceptos básicos: arquitectura, pila de protocolos, topologías de red, etc.… Después de esto, se ha enfocado el estudio hacia TinyDB, el cual puede ser considerado como parte de las tecnologías más avanzadas en el estado del arte de la gestión de la información en redes de sensores inalámbricos. TinyDB es un sistema de procesamiento de consultas para extraer información de una red de sensores. Proporciona una interfaz similar a SQL y permite trabajar con consultas contra la red de sensores inalámbricos como si se tratara de una base de datos tradicional. Además, TinyDB implementa varias optimizaciones para manejar los datos eficientemente. En este proyecto se describe también la implementación de una sencilla aplicación basada en redes de sensores inalámbricos. Las motas en la aplicación son capaces de medir la corriente a través de un cable. El objetivo de esta aplicación es monitorizar el consumo de energía en diferentes zonas de un área industrial o doméstico, utilizando redes de sensores inalámbricas. Además, se han implementado las optimizaciones más importantes que se han aprendido en el análisis de la plataforma TinyDB. Para desarrollar esta aplicación se ha utilizado como sensores la plataforma open-source de creación de prototipos electrónicos Arduino, y el ordenador de placa reducida Raspberry Pi como coordinador. ABSTRACT. Knowledge management (KM) is the process of collecting raw data for analysis and filtering, to get a useful knowledge from this data. In this project the information management in wireless sensor networks is studied as starting point before knowledge management. Wireless sensor networks (WSN) are networks which consists of sensors (also known as motes) distributed over an area, to monitor some physical conditions of the environment. Wireless sensor networks are characterized by power consumption constrains for sensors which are using batteries, by the ability to be adaptable to changes and to be scalable, and by the ability to cope sensor failures. In this project it is studied information management in wireless sensor networks. The document starts introducing basic concepts: architecture, stack of protocols, network topology… After this, the study has been focused on TinyDB, which can be considered as part of the most advanced technologies in the state of the art of information management in wireless sensor networks. TinyDB is a query processing system for extracting information from a network of sensors. It provides a SQL-like interface and it lets us to work with queries against the wireless sensor network like if it was a traditional database. In addition, TinyDB implements a lot of optimizations to manage data efficiently. In this project, it is implemented a simple wireless sensor network application too. Application’s motes are able to measure amperage through a cable. The target of the application is, by using a wireless sensor network and these sensors, to monitor energy consumption in different areas of a house. Additionally, it is implemented the most important optimizations that we have learned from the analysis of TinyDB platform. To develop this application it is used Arduino open-source electronics prototyping platform as motes, and Raspberry Pi single-board computer as coordinator.
Resumo:
In questa tesi si è progettata una applicazione Android che permettesse di controllare da remoto funzionalità hardware e software offerte da una piattaforma Raspberry Pi. Si sono infine svolte alcune misure atte a testare le performance di rete di questa scheda.
Resumo:
L’obiettivo della tesi è quello di realizzare un progetto basato sull’interazione tra Raspberry Pi e NanoVNA, allo scopo di rendere automatico il processo di acquisizione dei dati di questo strumento di misura. A tal fine è stato sviluppato un programma in linguaggio Python, eseguibile dal terminale del Raspberry Pi, che permette all’utente di inserire agevolmente i parametri essenziali, come l’orario di inizio e termine delle misurazioni e l'intervallo di tempo tra una rilevazione e l’altra.
Resumo:
A deteção e seguimento de pessoas tem uma grande variedade de aplicações em visão computacional. Embora tenha sido alvo de anos de investigação, continua a ser um tópico em aberto, e ainda hoje, um grande desafio a obtenção de uma abordagem que inclua simultaneamente exibilidade e precisão. O trabalho apresentado nesta dissertação desenvolve um caso de estudo sobre deteção e seguimento automático de faces humanas, em ambiente de sala de reuniões, concretizado num sistema flexível de baixo custo. O sistema proposto é baseado no sistema operativo GNU's Not Unix (GNU) linux, e é dividido em quatro etapas, a aquisição de vídeo, a deteção da face, o tracking e reorientação da posição da câmara. A aquisição consiste na captura de frames de vídeo das três câmaras Internet Protocol (IP) Sony SNC-RZ25P, instaladas na sala, através de uma rede Local Area Network (LAN) também ele já existente. Esta etapa fornece os frames de vídeo para processamento à detecção e tracking. A deteção usa o algoritmo proposto por Viola e Jones, para a identificação de objetos, baseando-se nas suas principais características, que permite efetuar a deteção de qualquer tipo de objeto (neste caso faces humanas) de uma forma genérica e em tempo real. As saídas da deteção, quando é identificado com sucesso uma face, são as coordenadas do posicionamento da face, no frame de vídeo. As coordenadas da face detetada são usadas pelo algoritmo de tracking, para a partir desse ponto seguir a face pelos frames de vídeo subsequentes. A etapa de tracking implementa o algoritmo Continuously Adaptive Mean-SHIFT (Camshift) que baseia o seu funcionamento na pesquisa num mapa de densidade de probabilidade, do seu valor máximo, através de iterações sucessivas. O retorno do algoritmo são as coordenadas da posição e orientação da face. Estas coordenadas permitem orientar o posicionamento da câmara de forma que a face esteja sempre o mais próximo possível do centro do campo de visão da câmara. Os resultados obtidos mostraram que o sistema de tracking proposto é capaz de reconhecer e seguir faces em movimento em sequências de frames de vídeo, mostrando adequabilidade para aplicação de monotorização em tempo real.
Resumo:
L'objectiu d'aquest projecte és desenvolupar una eina de gestió d'horaris, creació d'un lector sense fil amb la tecnologia NFC i realitzar-ho tot amb el pressupost més baix possible.
Resumo:
Realizzazione di un supporto CoAP per il framework Kura con le seguenti caratteristiche: 1. Ottima scalabilità, ad organizzazione gerarchica, con aggiunta e rimozione dinamica di nodi e gestione automatica delle disconnessioni. 2. Integrazione efficiente di tecnologie CoAP ed MQTT progettate appositamente per l’IoT tramite lo sviluppo di un pattern di comunicazione per la gestione degli scambi delle informazioni. 3. Un limitato uso di risorse con modifiche su entrambe le implementazioni standard dei protocolli usati in modo tale da adattarle agli obiettivi prefissati. Il tutto a un costo bassissimo, dato che si basa su tecnologie open e grazie alla possibilità di utilizzo su Raspberry Pi.
Resumo:
This dissertation presents the competitive control methodologies for small-scale power system (SSPS). A SSPS is a collection of sources and loads that shares a common network which can be isolated during terrestrial disturbances. Micro-grids, naval ship electric power systems (NSEPS), aircraft power systems and telecommunication system power systems are typical examples of SSPS. The analysis and development of control systems for small-scale power systems (SSPS) lacks a defined slack bus. In addition, a change of a load or source will influence the real time system parameters of the system. Therefore, the control system should provide the required flexibility, to ensure operation as a single aggregated system. In most of the cases of a SSPS the sources and loads must be equipped with power electronic interfaces which can be modeled as a dynamic controllable quantity. The mathematical formulation of the micro-grid is carried out with the help of game theory, optimal control and fundamental theory of electrical power systems. Then the micro-grid can be viewed as a dynamical multi-objective optimization problem with nonlinear objectives and variables. Basically detailed analysis was done with optimal solutions with regards to start up transient modeling, bus selection modeling and level of communication within the micro-grids. In each approach a detail mathematical model is formed to observe the system response. The differential game theoretic approach was also used for modeling and optimization of startup transients. The startup transient controller was implemented with open loop, PI and feedback control methodologies. Then the hardware implementation was carried out to validate the theoretical results. The proposed game theoretic controller shows higher performances over traditional the PI controller during startup. In addition, the optimal transient surface is necessary while implementing the feedback controller for startup transient. Further, the experimental results are in agreement with the theoretical simulation. The bus selection and team communication was modeled with discrete and continuous game theory models. Although players have multiple choices, this controller is capable of choosing the optimum bus. Next the team communication structures are able to optimize the players’ Nash equilibrium point. All mathematical models are based on the local information of the load or source. As a result, these models are the keys to developing accurate distributed controllers.
Resumo:
The widespread of low cost embedded electronics makes it easier to implement the smart devices that can understand either the environment or the user behaviors. The main object of this project is to design and implement home use portable smart electronics, including the portable monitoring device for home and office security and the portable 3D mouse for convenient use. Both devices in this project use the MPU6050 which contains a 3 axis accelerometer and a 3 axis gyroscope to sense the inertial motion of the door or the human hands movement. For the portable monitoring device for home and office security, MPU6050 is used to sense the door (either home front door or cabinet door) movement through the gyroscope, and Raspberry Pi is then used to process the data it receives from MPU6050, if the data value exceeds the preset threshold, Raspberry Pi would control the USB Webcam to take a picture and then send out an alert email with the picture to the user. The advantage of this device is that it is a small size portable stand-alone device with its own power source, it is easy to implement, really cheap for residential use, and energy efficient with instantaneous alert. For the 3D mouse, the MPU6050 would use both the accelerometer and gyroscope to sense user hands movement, the data are processed by MSP430G2553 through a digital smooth filter and a complementary filter, and then the filtered data will pass to the personal computer through the serial COM port. By applying the cursor movement equation in the PC driver, this device can work great as a mouse with acceptable accuracy. Compared to the normal optical mouse we are using, this mouse does not need any working surface, with the use of the smooth and complementary filter, it has certain accuracy for normal use, and it is easy to be extended to a portable mouse as small as a finger ring.
Resumo:
VladBot es un robot autónomo diseñado para posicionar en interiores un micrófono de medida. Este prototipo puede valorar la idea de automatizar medidas acústicas en interiores mediante un robot autónomo. Posee dos ruedas motrices y una rueda loca. Ésta rueda loca aporta maniobrabilidad al robot. Un soporte extensible hecho de aluminio sostiene el micrófono de medida. VladBot ha sido diseñado con tecnologías de bajo coste y bajo una plataforma abierta, Arduino. Arduino es una plataforma electrónica libre. Esto quiere decir que los usuarios tienen libre acceso a toda la información referente a los micro-controladores (hardware) y referente al software. Ofrece un IDE (Integrated Development Environment, en español, Entorno de Desarrollo Integrado) de forma gratuita y con un sencillo lenguaje de programación, con el que se pueden realizar proyectos de cualquier tipo. Además, los usuarios disponen de un foro donde encontrar ayuda, “Arduino Forum”. VladBot se comunica con el usuario a través de Bluetooth, creando un enlace fiable y con un alcance suficiente (aproximadamente 100 metros) para que controlar a VladBot desde una sala contigua. Hoy en día, Bluetooth es una tecnología implantada en casi todos los ordenadores, por lo que no necesario ningún sistema adicional para crear dicho enlace. Esta comunicación utiliza un protocolo de comunicaciones, JSON (JavaScript Object Notation). JSON hace que la comunicación sea más fiable, ya que sólo un tipo de mensajes preestablecidos son reconocidos. Gracias a este protocolo es posible la comunicación con otro software, permitiendo crear itinerarios en otro programa externo. El diseño de VladBot favorece su evolución hasta un sistema más preciso ya que el usuario puede realizar modificaciones en el robot. El código que se proporciona puede ser modificado, aumentando las funcionalidades de VladBot o mejorándolas. Sus componentes pueden ser cambiados también (incluso añadir nuevos dispositivos) para aumentar sus capacidades. Vladbot es por tanto, un sistema de transporte (de bajo coste) para un micrófono de medida que se puede comunicar inalámbricamente con el usuario de manera fiable. ABSTRACT. VladBot is an autonomous robot designed to indoor positioning of a measurement microphone. This prototype can value the idea of making automatic acoustic measurements indoor with an autonomous robot. It has two drive wheels and a caster ball. This caster ball provides manoeuvrability to the robot. An extendible stand made in aluminium holds the measurement microphone. VladBot has been designed with low cost technologies and under an open-source platform, Arduino. Arduino is a freeFsource electronics platform. This means that users have free access to all the information about micro-controllers (hardware) and about the software. Arduino offers a free IDE (Integrated Development Environment) with an easy programming language, which any kind of project can be made with. Besides, users have a forum where find help, “Arduino Forum”. VladBot communicates with the user by Bluetooth, creating a reliable link with enough range (100 meters approximately) for controlling VladBot in the next room. Nowadays, Bluetooth is a technology embedded in almost laptops, so it is not necessary any additional system for create this link. This communication uses a communication protocol, JSON (JavaScript Object Notation). JSON makes the communication more reliable, since only a preFestablished kind of messages are recognised. Thanks to this protocol is possible the communication with another software, allowing to create routes in an external program. VladBot´s design favours its evolution to an accurate system since the user can make modifications in the robot. The code given can be changed, increasing VladBot´s uses or improving these uses. Their components can be changed too (even new devices can be added) for increasing its abilities. So, VladBot is a (low cost) transport system for a measurement microphone, which can communicate with the user in a reliable way.
Resumo:
Home Manager, è una piattaforma sperimentale per la gestione di Smart Space e in particolare di una casa intelligente immersa in uno ambiente, avente l'ambizione di anticipare le necessità dell'utente. Questa tesi ha due obiettivi fondamentali: in primo luogo, implementare su piattaforma Raspberry la parte di Home Manager relativa allo scenario del riconoscimento delle persone negli ambienti della casa, mediante l'utilizzo del modulo telecamera; in secondo luogo, attraverso le informazioni ricavate precedentemente, implementare e simulare una gestione intelligente e automatica delle luci presenti all'interno della casa, sfruttando a tal fine un modulo relè.
Resumo:
Projeto para obtenção do grau de Mestre em Engenharia Informática e de Computadores
Resumo:
La radiothérapie stéréotaxique corporelle (SBRT) est une technique couramment employée pour le traitement de tumeurs aux poumons lorsque la chirurgie n’est pas possible ou refusée par le patient. Une complication de l’utilisation de cette méthode provient du mouvement de la tumeur causé par la respiration. Dans ce contexte, la radiothérapie asservie à la respiration (RGRT) peut être bénéfique. Toutefois, la RGRT augmente le temps de traitement en raison de la plus petite proportion de temps pour laquelle le faisceau est actif. En utilisant un faisceau de photons sans filtre égalisateur (FFF), ce problème peut être compensé par le débit de dose plus élevé d’un faisceau FFF. Ce mémoire traite de la faisabilité d’employer la technique de RGRT en combinaison avec l’utilisation un faisceau FFF sur un accélérateur Synergy S (Elekta, Stockholm, Suède) avec une ceinture pneumatique, le Bellows Belt (Philips, Amsterdam, Pays-Bas), comme dispositif de suivi du signal respiratoire. Un Synergy S a été modifié afin de pouvoir livrer un faisceau 6 MV FFF. Des mesures de profils de dose et de rendements en profondeur ont été acquises en cuve à eau pour différentes tailles de champs. Ces mesures ont été utilisées pour créer un modèle du faisceau 6 MV FFF dans le système de planification de traitement Pinnacle3 de Philips. Les mesures ont été comparées au modèle à l’aide de l’analyse gamma avec un critère de 2%, 2 mm. Par la suite, cinq plans SBRT avec thérapie en arc par modulation volumétrique (VMAT) ont été créés avec le modèle 6 MV du Synergy S, avec et sans filtre. Une comparaison des paramètres dosimétriques a été réalisée entre les plans avec et sans filtre pour évaluer la qualité des plans FFF. Les résultats révèlent qu’il est possible de créer des plans SBRT VMAT avec le faisceau 6 MV FFF du Synergy S qui sont cliniquement acceptables (les crières du Radiation Therapy Oncology Group 0618 sont respectés). Aussi, une interface physique de RGRT a été mise au point pour remplir deux fonctions : lire le signal numérique de la ceinture pneumatique Bellows Belt et envoyer une commande d’irradiation binaire au linac. L’activation/désactivation du faisceau du linac se fait par l’entremise d’un relais électromécanique. L’interface comprend un circuit électronique imprimé fait maison qui fonctionne en tandem avec un Raspberry Pi. Un logiciel de RGRT a été développé pour opérer sur le Raspberry Pi. Celui-ci affiche le signal numérique du Bellows Belt et donne l’option de choisir les limites supérieure et inférieure de la fenêtre d’irradiation, de sorte que lorsque le signal de la ceinture se trouve entre ces limites, le faisceau est actif, et inversement lorsque le signal est hors de ces limites. Le logiciel envoie donc une commande d’irradiation au linac de manière automatique en fonction de l’amplitude du signal respiratoire. Finalement, la comparaison entre la livraison d’un traitement standard sans RGRT avec filtre par rapport à un autre plan standard sans RGRT sans filtre démontre que le temps de traitement en mode FFF est réduit en moyenne de 54.1% pour un arc. De la même manière, la comparaison entre la livraison d’un traitement standard sans RGRT avec filtre par rapport à un plan de RGRT (fenêtre d’irradiation de 75%) sans filtre montre que le temps de traitement de RGRT en mode FFF est réduit en moyenne de 27.3% par arc. Toutefois, il n’a pas été possible de livrer des traitements de RGRT avec une fenêtre de moins de 75%. Le linac ne supporte pas une fréquence d’arrêts élevée.
Resumo:
TESSA is a toolkit for experimenting with sensory augmentation. It includes hardware and software to facilitate rapid prototyping of interfaces that can enhance one sense using information gathered from another sense. The toolkit contains a range of sensors (e.g. ultrasonics, temperature sensors) and actuators (e.g. tactors or stereo sound), designed modularly so that inputs and outputs can be easily swapped in and out and customized using TESSA’s graphical user interface (GUI), with “real time” feedback. The system runs on a Raspberry Pi with a built-in touchscreen, providing a compact and portable form that is amenable for field trials. At CHI Interactivity, the audience will have the opportunity to experience sensory augmentation effects using this system, and design their own sensory augmentation interfaces.
Resumo:
El hardware reconfigurable es una tecnología emergente en aplicaciones espaciales.Debido a las características de este hardware, pues su configuración lógica queda almacenada en memoria RAM estática, es susceptible de diversos errores que pueden ocurrir con mayor frecuencia cuando es expuesta a entornos de mayor radiación, como en misiones de exploración espacial. Entre estos se encuentran los llamados SEU o Single Event Upset, y suelen ser generados por partículas cósmicas, pues pueden tener la capacidad de descargar un transistor y de este modo alterar un valor lógico en memoria, y por tanto la configuración lógica del circuito. Por ello que surge la necesidad de desarrollar técnicas que permitan estudiar las vulnerabilidades de diversos circuitos, de forma económica y rápida, además de técnicas de protección de los mismos. En este proyecto nos centraremos en desarrollar una herramienta con este propósito, Nessy 7.0. La plataforma nos permitirá emular, detectar y analizar posibles errores causados por la radiación en los sistemas digitales. Para ello utilizaremos como dispositivo controlador, una Raspberry Pi 3, que contendrá la herramienta principal, y controlará y se comunicará con la FPGA que implementará el diseño a testear, en este caso una placa Nexys 4 DDR con una FPGA Artix-7. Finalmente evaluaremos un par de circuitos con la plataforma.
Resumo:
This project, realized at the company ABER Ltd, describes the process followed for the developing of an electronic control system for a hydraulic elevator. The previous control system was based on relay logic, and the company wanted to change it to a microcontroller based technology. To do so, different approaches were studied and finally the selected technology for the development was the Raspberry Pi. After, the software needed for all the elevator types was developed, and the interface hardware was selected. In the end, several test were made to adjust the software and the hardware and to prove the good operation of the system.