977 resultados para Dominion Power Company
Resumo:
Plan and profile of discharge tunnel along Niagara River. The horizontal scale is 1 inch = 100 feet, the vertical scale is 1 inch = 40 feet. The drawing is dated November 7, 1902.
Resumo:
Drawing by consulting engineer dated October 19, 1901. Scale is noted as 1/4 inch = 1 foot.
Resumo:
Drawing of "Section thru Wheelpit" dated September 1925. Shows unit no.1 through unit no.11, power house floor and water surface.
Resumo:
Engineer drawing (untitled), some of the labels read "exciter chamber", "fore bay", "power house floor".
Resumo:
Four men (unknown) standing in the tunnel wearing hard hats.
Resumo:
A large group of men in hard hats in the tunnel. The names of the men are unknown.
Resumo:
Four men standing in hydro tunnel.
Resumo:
Letter to the Welland Canal Office from Welland Woodruff, Government Director of the Welland Canal Company in which he dissents from giving an extension of time to the St. Catharines Water Power Company to extend the lease of water from this time. This is a copy of the original, March 11, 1837.
Resumo:
Receipt from N. W. Harris and Co., Bankers, New York for installment on Dominion Power and Transmission Co., Dec. 19, 1907.
Resumo:
Some uncertainties such as the stochastic input/output power of a plug-in electric vehicle due to its stochastic charging and discharging schedule, that of a wind unit and that of a photovoltaic generation source, volatile fuel prices and future uncertain load growth, all together could lead to some risks in determining the optimal siting and sizing of distributed generators (DGs) in distributed systems. Given this background, under the chance constrained programming (CCP) framework, a new method is presented to handle these uncertainties in the optimal sitting and sizing problem of DGs. First, a mathematical model of CCP is developed with the minimization of DGs investment cost, operational cost and maintenance cost as well as the network loss cost as the objective, security limitations as constraints, the sitting and sizing of DGs as optimization variables. Then, a Monte Carolo simulation embedded genetic algorithm approach is developed to solve the developed CCP model. Finally, the IEEE 37-node test feeder is employed to verify the feasibility and effectiveness of the developed model and method. This work is supported by an Australian Commonwealth Scientific and Industrial Research Organisation (CSIRO) Project on Intelligent Grids Under the Energy Transformed Flagship, and Project from Jiangxi Power Company.
Resumo:
The non-technical loss is not a problem with trivial solution or regional character and its minimization represents the guarantee of investments in product quality and maintenance of power systems, introduced by a competitive environment after the period of privatization in the national scene. In this paper, we show how to improve the training phase of a neural network-based classifier using a recently proposed meta-heuristic technique called Charged System Search, which is based on the interactions between electrically charged particles. The experiments were carried out in the context of non-technical loss in power distribution systems in a dataset obtained from a Brazilian electrical power company, and have demonstrated the robustness of the proposed technique against with several others natureinspired optimization techniques for training neural networks. Thus, it is possible to improve some applications on Smart Grids.
Resumo:
Caption title.
Resumo:
Issued with the Business Men's Association, Niagara Falls, N. Y. The water-power of the Falls of Niagara applied to manufacturing purposes. Buffalo, 1890.
Resumo:
The site of present-day St. Catharines was settled by 3000 United Empire Loyalists at the end of the 18th century. From 1790, the settlement (then known as "The Twelve") grew as an agricultural community. St. Catharines was once referred to Shipman's Corners after Paul Shipman, owner of a tavern that was an important stagecoach transfer point. In 1815, leading businessman William Hamilton Merritt abandoned his wharf at Queenston and set up another at Shipman's Corners. He became involved in the construction and operation of several lumber and gristmills along Twelve Mile Creek. Shipman's Corners soon became the principal milling site of the eastern Niagara Peninsula. At about the same time, Merritt began to develop the salt springs that were discovered along the river which subsequently gave the village a reputation as a health resort. By this time St. Catharines was the official name of the village; the origin of the name remains obscure, but is thought to be named after Catharine Askin Robertson Hamilton, wife of the Hon. Robert Hamilton, a prominent businessman. Merritt devised a canal scheme from Lake Erie to Lake Ontario that would provide a more reliable water supply for the mills while at the same time function as a canal. He formed the Welland Canal Company, and construction took place from 1824 to 1829. The canal and the mills made St. Catharines the most important industrial centre in Niagara. By 1845, St. Catharines was incorporated as a town, with the town limits extending in 1854. Administrative and political functions were added to St. Catharines in 1862 when it became the county seat of Lincoln. In 1871, construction began on the third Welland Canal, which attracted additional population to the town. As a consequence of continual growth, the town limits were again extended. St. Catharines attained city status in 1876 with its larger population and area. Manufacturing became increasingly important in St. Catharines in the early 1900s with the abundance of hydro-electric power, and its location on important land and water routes. The large increase in population after the 1900s was mainly due to the continued industrialization and urbanization of the northern part of the city and the related expansion of business activity. The fourth Welland Canal was opened in 1932 as the third canal could no longer accommodate the larger ships. The post war years and the automobile brought great change to the urban form of St. Catharines. St. Catharines began to spread its boundaries in all directions with land being added five times during the 1950s. The Town of Merritton, Village of Port Dalhousie and Grantham Township were all incorporated as part of St. Catharines in 1961. In 1970 the Province of Ontario implemented a regional approach to deal with such issues as planning, pollution, transportation and services. As a result, Louth Township on the west side of the city was amalgamated, extending the city's boundary to Fifteen Mile Creek. With its current population of 131,989, St. Catharines has become the dominant centre of the Niagara region. Source: City of St. Catharines website http://www.stcatharines.ca/en/governin/HistoryOfTheCity.asp (January 27, 2011)
Resumo:
Walter D’Arcy Ryan was born in 1870 in Kentville, Nova Scotia. He became the chief of the department of illumination at the General Electric Company of Schenectady, New York. He was a founder in the field of electrical illumination. He built the electric steam scintillator which had numerous nozzles and valves. The operator would release steam through the valves. The nozzles all had names which included: Niagara, fan, snake, plume, column, pinwheel and sunburst. The steam scintillator was combined with projectors, prismatic reflectors, flashers and filters to produce the desired effects. In 1920 a group of businessmen from Niagara Falls, New York formed a group who called themselves the “generators’. They lobbied the American and Canadian governments to improve the illumination of the Falls. They were able to raise $58, 000 for the purchase and installation of 24 arc lights to illuminate the Falls. On February 24th, 1925 the Niagara Falls Illumination Board was formed. Initially, the board had a budget of $28,000 for management, operation and maintenance of the lights. The power was supplied free by the Ontario Power Company. They had 24 lights installed in a row on the Ontario Power Company surge tank which was next to the Refectory in Victoria Park on the Canadian side. The official opening ceremony took place on June 8th, 1925 and included a light parade in Niagara Falls, New York and an international ceremony held in the middle of the Upper Steel Arch Bridge. Walter D’Arcy Ryan was the illuminating engineer and A.D. Dickerson who was his New York field assistant directed the scintillator. with information from American Technological Sublime by David E. Nye and the Niagara Falls info website Location: Brock University Archives Source Information: Subject Headings: Added Entries: 100 Ryan, W. D’A. |q (Walter D’Arcy), |d 1870-1934 610 General Electric Company 650 Lighting, Architectural and decorative 650 Lighting |z New York (State) |z Niagara Falls 700 Dickerson, A.F. 700 Schaffer, J.W. Related material held at other repositories: The Niagara Falls Museum in Niagara Falls, Ontario has a program (pamphlet) dedicating new lighting in 1958 and it has postcards depicting the illumination of the Falls. Some of Ryan’s accomplishments can be seen at The Virtual Museum of the City of San Francisco. Described by: Anne Adams Date: Sept 26,Upper Steel Arch Bridge. Walter D’Arcy Ryan was the illuminating engineer and A.D. Dickerson who was his New York field assistant directed the scintillator. with information from American Technological Sublime by David E. Nye and the Niagara Falls info website