78 resultados para Dolichos labe-labe
Resumo:
Contiene: Vol. I ( XV, 688 p.) -- Vol. II ([4], 714 p.)
Resumo:
"Tiré à 380 exemplaires (tous numérotés) 300 papier de Hollande. 50 [papier de Hollande] portraits doubles. 30 [papier] Whatman, [portraits doubles] no. 50 [portraits double]"
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Full Text / Article complet
Resumo:
Full Text / Article complet
Resumo:
It has been shown that cover crops can enhance soil nitrous oxide (N(2)O) emissions, but the magnitude of increase depends on the quantity and quality of the crop residues. Therefore, this study aimed to evaluate the effect of long-term (19 and 21 years) no-till maize crop rotations including grass [black oat (Avena strigosa Schreb)] and legume cover crops [vetch (Vigna sativa L), cowpea (Vigna unguiculata L. Walp), pigeon pea (Cajanus cajan L. Millsp.) and lablab (Dolichos lablab)] on annual soil N(2)O emissions in a subtropical Acrisol in Southern Brazil. Greater soil N(2)O emissions were observed in the first 45 days after the cover crop residue management in all crop rotations, varying from -20.2 +/- 1.9 to 163.9 +/- 24.3 mu g N m(-2) h(-1). Legume-based crop rotations had the largest cumulative emissions in this period, which were directly related to the quantity of N (r(2) = 0.60, p = 0.13)and inversely related to the lignin:N ratio(r(2) = 0.89,p = 0.01) of the cover crop residues. After this period, the mean fluxes were smaller and were closely related to the total soil N stocks (r(2) = 0.96, p = 0.002). The annual soil N(2)O emission represented 0.39-0.75% of the total N added by the legume cover crops. Management-control led soil variables such as mineral N (NO(3)(-) and NH(4)(+)) and dissolved organic C influenced more the N(2)O fluxes than environmental-related variables as water-filled pore space and air and soil temperature. Consequently, the synchronization between N mineralization and N uptake by plants seems to be the main challenge to reduce N(2)O emissions while maintaining the environmental and agronomic services provided by legume cover crops in agricultural systems. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In the adult olfactory nerve pathway of rodents, each primary olfactory axon forms a terminal arbor in a single glomerulus in the olfactory bulb. During development, axons are believed to project directly to and terminate precisely within a glomerulus without any exuberant growth or mistargeting. To gain insight into mechanisms underlying this process, the trajectories of primary olfactory axons during glomerular formation were studied in the neonatal period. Histochemical staining of mouse olfactory bulb sections with the lectin Dolichos biflorus-agglutinin revealed that many olfactory axons overshoot the glomerular layer and course into the deeper laminae of the bulb in the early postnatal period. Single primary olfactory axons were anterogradely labelled either with the lipophilic carbocyanine dye, 1,1'-dioctodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), or with horseradish peroxidase (HRP) by localized microinjections into the nerve fiber layer of the rat olfactory bulb. Five distinct trajectories of primary olfactory axons were observed in DLI-labelled preparations at postnatal day 1.5 (P1.5). Axons either coursed directly to and terminated specifically within a glomerulus, branched before terminating in a glomerulus, bypassed glomeruli and entered the underlying external plexiform layer, passed through the glomerular layer with side branches into glomeruli, or branched into more than one glomerulus. HRP-labelled axon arbors from eight postnatal ages were reconstructed by camera lucida and were used to determine arbor length, arbor area, and arbor branch number. Whereas primary olfactory axons display errors in laminar targeting in the mammalian olfactory bulb, axon arbors typically achieve their adult morphology without exuberant growth. Many olfactory axons appear not to recognize appropriate cues to terminate within the glomerular layer during the early postnatal period. However, primary olfactory axons exhibit precise targeting in the glomerular layer after P5.5, indicating temporal differences in either the presence of guidance cues or the ability of axons to respond to these cues. (C) 1999 Wiley-Liss, Inc.
Resumo:
Although N-CAM has previously been implicated in the growth and fasciculation of axons, the development of axon tracts in transgenic mice with a targeted deletion of the 180-kD isoform of the neural cell adhesion molecule (N-CAM-180) appears grossly normal in comparison to wild-type mice. We examined the organization of the olfactory nerve projection from the olfactory neuroepithelium to glomeruli in the olfactory bulb of postnatal N-CAM-180 null mutant mice. Immunostaining for olfactory marker protein revealed the normal presence of fully mature primary olfactory neurons within the olfactory neuroepithelium of mutant mice. The axons of these neurons form an olfactory nerve, enter the nerve fiber layer of the olfactory bulb, and terminate in olfactory glomeruli as in wild-type control animals. The olfactory bulb is smaller and the nerve fiber layer is relatively thicker in mutants than in wild-type mice. Previous studies have revealed that the plant lectin Dolichos biflorus agglutinin (DBA) clearly stains the perikarya and axons of a subpopulation of primary olfactory neurons. Thus, DBA staining enabled the morphology of the olfactory nerve pathway to be examined at higher resolution in both control and mutant animals. Despite a normal spatial pattern of DBA-stained neurons within the nasal cavity, there was a distorted axonal projection of these neurons onto the surface of the olfactory bulb in N-CAM-180 null mutants. In particular, DBA-stained axons formed fewer and smaller glomeruli in the olfactory bulbs of mutants in comparison to wild-type mice. Many primary olfactory axons failed to exit the nerve fiber layer and contribute to glomerular formation. These results indicate that N-CAM-180 plays an important role in the growth and fasciculation of primary olfactory axons and is essential for normal development of olfactory glomeruli. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Binding of cell surface carbohydrates to their receptors specifically promotes axon growth and synaptogenesis in select regions of the developing nervous system. In some cases these interactions depend upon cell-cell adhesion mediated by the same glycoconjugates present on the surface of apposing cells or their processes. We have previously shown that the plant lectin Dolichos biflorus agglutinin (DBA) binds to: a subpopulation of mouse primary olfactory neurons whose axons selectively fasciculate prior to terminating in the olfactory bulb. In the present study, we investigated whether these glycoconjugates were also expressed by postsynaptic olfactory neurons specifically within the olfactory pathway. We show here for the first time that DBA ligands were expressed both by a subset of primary olfactory neurons as well as by the postsynaptic mitral/tufted cells in BALB/C mice. These glycoconjugates were first detected on mitral/tufted cell axons during the early postnatal period, at a time when there is considerable synaptogenesis and synaptic remodelling in the primary olfactory cortex. This is one of the few examples of the selective expression of molecules in contiguous axon tracts in the mammalian nervous system. These results suggest that glycoconjugates recognized by DBA may have a specific role in the formation and maintenance of neural connections within a select functional pathway in the brain. J. Comp. Neurol. 443:213-225, 2002. (C) 2002 Wiley-Liss, Inc.
Resumo:
Cell surface glycoconjugates have been implicated in the growth and guidance of subpopulations of primary olfactory axons. While subpopulations of primary olfactory neurons have been identified by differential expression of carbohydrates in the rat there are few reports of similar subpopulations in the mouse. We have examined the spatiotemporal expression pattern of glycoconjugates recognized by the lectin from Wisteria floribunda (WFA) in the mouse olfactory system. In the developing olfactory neuroepithelium lining the nasal cavity, WFA stained a subpopulation of primary olfactory neurons and the fascicles of axons projecting to the target tissue, the olfactory bulb. Within the developing olfactory bulb, WFA stained the synaptic neuropil of the glomerular and external plexiform layers. In adults, strong expression of WFA ligands was observed in second-order olfactory neurons as well as in neurons in several higher order olfactory processing centres in the brain. Similar, although distinct, staining of neurons in the olfactory pathway was detected with Dolichos biflorus agglutinin. These results demonstrate that unique subpopulations of olfactory neurons are chemically coded by the expression of glycoconjugates. The conserved expression of these carbohydrates across species suggests they play an important role in the functional organization of this region of the nervous system.
Resumo:
Dentre as novas tecnologias, a fitorremediação é opção para a descontaminação de áreas que receberam intensas aplicações de herbicidas. Este trabalho foi desenvolvido com o objetivo de selecionar espécies com potencial para a fitorremediação de solos contaminados com o herbicida sulfentrazone. As espécies testadas foram: Calopogonium mucunoides, híbrido de sorgo (Sorghum bicolor x Sorghum sudanense), Crotalaria breviflora, Crotalaria juncea, Canavalia ensiformis, Dolichos lablab, Stizolobium deeringianum e Stizolobium aterrimum, cultivadas em cinco doses do sulfentrazone (0, 200, 400, 800 e 1.600 g ha-1). O experimento foi instalado em casa de vegetação, utilizando-se vasos com capacidade para 6 L, preenchidos com amostras de solo coletadas na profundidade de 0-20 cm. Foram avaliadas a fitotoxicidade do herbicida, a altura de plantas e a massa de matéria seca da parte aérea e de raízes. As espécies que manifestaram os menores sintomas de fitotoxicidade e os maiores índices de altura e matéria fresca e seca foram C. juncea, C. ensiformis e D. lablab, sendo selecionadas como tolerantes ao herbicida sulfentrazone e com potencial para fitorremediação.
Resumo:
This paper deals with anatomical descriptions of some types of nectaries in 27 species of honey plants of Piracicaba, S. P. The material studied was divides in two groups: a) Extra-floral nectaries; b) Floral nectaries. Euphorbia pulcherrima, Willd; showed to belonging to the first group: its nectaries tissue consist of an epidermal layer of cell without stomata and with true gland, with subepidermal cells diferentiated by the thickness of the wall. Among the plants with floral nectaries, the following types has been listed, according the location of the nectary in the flower: 1 - with true glands: a) in sepals, Hibiscus rosa sinensis, L.; Dombeya Wallichii, Bth. e Hk; b) in the stamens tube, Antigonum leptopus, Hook e Arn.; 2 - on the receptacle with nectariferous tissue in the epidermal cell with: a) thickness wall with stomata, Prunus persical, L.; b) thin wall without stomata, Crotalaria paulinia, Shranck; Caesal-pinia sepiaria, Roxb; Aberia caffra; 3 - with a disc located in the receptacle with: epidermal: a) with stomata, Coffea arábica, L. var. semper florens; Citrus aurantifolia, Swing; Cinchona sp.; Pryrostegia ignea, Presl.; b) without stomata and with thin wall, Leojurus sibiricus, L.; Bactocydia unguis, Mart., Ipomoea purpurea, L.; Greviüea Thelemanniana, Hueg.; Dolichos lablab, L.; Vernonia polyanthes, Less., Montanoa bipinatifida, C. Koch., Eruca sativa, L. Brassica Juncea, Co; Eucalyptus tereticomis, Smith.; Eucalyptus rostrata, Schleche; Salvia splendens, Selow.; 4 - in the basal tissues of the ovary, Budleia brasiliensis, Jacq F.; Petrea subserrata, Cham.; 5 - in the base of stamens, Per sea americana, Mill. On the anatomical point of view, most of the types of nectary studied has external nectariferous tissues, located on the epidermal cells with thin periclinal wall and without stomata. The sub-epidermal layer were rich in sugar. Short correlation was found between the structure of the nectary and the amount of nectar secretion. So, in the nectary with true glands, in those with thin wall and without stomata on epidermal cells and in those with stomata, the secretion was higher than in the other types listed.
Resumo:
The culture forms of L. mexicana pifanoi (LRC L-90), L. mexicana mexicana (LRC L-94, M-379); L. braziliensis braziliensis (LRC L-77, L-1, M-2903, H-LSS) and L. mexicana amazonensis (H-JMMO, M-JOF, H-21, H-PLL,M-1696) were tested with the following lectins: Canavalia ensiformis, Ricinus communis-120, Axinella polypoides, Phaseolus vulgaris, Evonymus europaeus, lotus tetragonolobus, Dolichos biflorus, Aaptos papillata II, Laburnum alpinum, Ulex europaeus, Arachis hypogaea and Soja hispida. All examined strains of Leishmania were agglutinated by C. ensiformis, R. communis-120 and A. popypoides. No agglutination reactions were observed with P. vulgaris, D.biflorus, A. papillata II, E. europaeus and L. tetragonolobus. Only L. m. pifanoi and the L. m. amazonensis strains H-JMMO and MJOF showed agglutination reactions with S. hispida, U. europaeus, L. alpinum and A. hypogaea, while L. m. mexicana (LRC L-94; M-379) strains, L. b. braziliensis H. LSS, LRC L-77; L-1; M-2903 and the L. m. amazonensis strains, H-PLL, H-21, M-1696 showed no agglutination reactions with these four lectins.