974 resultados para Diuron metabolites
Resumo:
Mexiletine (MEX), hydroxymethylmexiletine (HMM) and P-hydroxy-mexiletine (PHM) were analyzed in rat plasma by LC-MS/MS. The plasma samples were prepared by liquid-liquid extraction using methyl-tert-butyl ether as extracting solvent. MEX, HMM, and PHM enantiomers were resolved on a Chiralpak (R) AD column. Validation of the method showed a relative standard deviation (precision) and relative errors (accuracy) of less than 15% for all analytes studied. Quantification limits were 0.5 ng ml(-1) for the MEX and 0.2 ng ml(-1) for the HMM and PHM enantiomers. The validated method was successfully applied to quantify the enantiomers of MEX and its metabolites in plasma samples of rats (n = 6) treated with a single oral dose of racemic MEX. Chirality 21:648-656, 2009. (C) 2008 Wiley-Liss, Inc.
Resumo:
Tamoxifen has been suggested to produce beneficial cardiovascular effects, although the mechanisms for these effects are not fully known. Moreover, although tamoxifen metabolites may exhibit 30-100 times higher potency than the parent drug, no previous study has compared the effects produced by tamoxifen and its metabolites on vascular function. Here, we assessed the vascular responses to acetylcholine and sodium nitroprusside on perfused hindquarter vascular bed of rats treated with tamoxifen or its main metabolites (N-desmethyl-tamoxifen, 4-hydroxy-tamoxifen, and endoxifen) for 2 weeks. Plasma and whole-blood thiobarbituric acid reactive substances (TBARS) concentrations were determined using a fluorometric method. Plasma nitrite and NOx (nitrite + nitrate) concentrations were determined using an ozone-based chemiluminescence assay and Griess reaction, respectively. Treatment with tamoxifen reduced the responses to acetylcholine (pD(2) = 2.2 +/- 0.06 and 1.9 +/- 0.05 after vehicle and tamoxifen, respectively; P < 0.05), while its metabolites improved these responses (pD(2) = 2.5 +/- 0.04 after N-desmethyl-tamoxifen, 2.5 +/- 0.03 after 4-hydroxy-tamoxifen, and 2.6 +/- 0.08 after endoxifen; P < 0.01). Tamoxifen and its metabolites showed no effect on endothelial-independent responses to sodium nitroprusside (P > 0.05). While tamoxifen treatment resulted in significantly higher plasma and whole blood lipid peroxide levels (37% and 62%, respectively; both P < 0.05), its metabolites significantly decreased lipid peroxide levels (by approximately 50%; P < 0.05). While treatment with tamoxifen decreased the concentrations of markers of nitric oxide formation by approximately 50% (P < 0.05), tamoxifen metabolites had no effect on these parameters (P > 0.05). These results suggest that while tamoxifen produces detrimental effects, its metabolites produce counteracting beneficial effects on the vascular system and on nitric oxide/reactive oxygen species formation.
Resumo:
Exposure of insulin-sensitive tissues to free fatty acids can impair glucose disposal through inhibition of carbohydrate oxidation and glucose transport. However, certain fatty acids and their derivatives can also act as endogenous ligands for peroxisome proliferator-activated receptor gamma (PPARgamma ), a nuclear receptor that positively modulates insulin sensitivity. To clarify the effects of externally delivered fatty acids on glucose uptake in an insulin-responsive cell type, we systematically examined the effects of a range of fatty acids on glucose uptake in 3T3-L1 adipocytes. Of the fatty acids examined, arachidonic acid (AA) had the greatest positive effects, significantly increasing basal and insulin-stimulated glucose uptake by 1.8- and 2-fold, respectively, with effects being maximal at 4 h at which time membrane phospholipid content of AA was markedly increased. The effects of AA were sensitive to the inhibition of protein synthesis but were unrelated to changes in membrane fluidity. AA had no effect on total cellular levels of glucose transporters, but significantly increased levels of GLUT1 and GLUT4 at the plasma membrane. While the effects of AA were insensitive to cyclooxygenase inhibition, the lipoxygenase inhibitor, nordihydroguaiaretic acid, substantially blocked the AA effect on basal glucose uptake. Furthermore, adenoviral expression of a dominant-negative PPARgamma mutant attenuated the AA potentiation of basal glucose uptake. Thus, AA potentiates basal and insulin-stimulated glucose uptake in 3T3-L1 adipocytes by a cyclooxygenase-independent mechanism that increases the levels of both GLUT1 and GLUT4 at the plasma membrane. These effects are at least partly dependent on de novo protein synthesis, an intact lipoxygenase pathway and the activation of PPARgamma with these pathways having a greater role in the absence than in the presence of insulin.
Resumo:
The reasons for the intra- and interindividual variability in the clearance of valproic acid (VPA) have not been completely characterized. The aim of this study was to examine day-night changes in the clearance of 3-oxo-valproate (3-oxo-VPA), 4-hydroxy-valproate (4-OH-VPA), and valproic acid glucuronides under steady state. Six diurnally active healthy male volunteers ingested 200 mg sodium valproate 12 hourly, at 0800 and 2000, for 28 days. On the last study day, two sequential 12-h urine samples were collected commencing at 2000 the evening before. Plasma samples were obtained at the end of each collection. Following alkaline hydrolysis, urine was analyzed for concentrations of VPA, 3-oxo-VPA, and 4-OH-VPA. A separate aliquot was assayed for creatinine (CR). The plasma concentrations of VPA, 3-oxo-VPA, 2-en-VPA, and CR were determined. The analysis of VPA and its metabolites was performed by CC-MS. There was an increase in plasma 3-oxo-VPA concentration at 0800, sampling as compared to 2000 sampling (p < .05). The urinary excretion of 3-oxo-VPA and VPA glucuronides were decreased between 2000 and 0800, compared to between 0800, and 2000, by 30% and 50% respectively (p < .05). These results indicate a nocturnal decrease in renal clearance of 3-oxo-VPA rather than a decrease in the beta -oxidation of VPA at night. These differences were not explained by differences between the sampling periods in CR excretion. These results indicate the importance of collecting samples of 24-h duration when studying metabolic profiles of VPA.
Resumo:
The (6R*,9S*,11S*) and (22S*,23R*,27R*,31R*) stereochemistry, respectively, of the tetrahydropyranyl and spiroacetal moieties in bistramide A (1) have been established by stereoselective syntheses and high field NMR comparisons. Routes to the gamma-amino acid moiety are outlined. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Regulation of the expression of dimethylsulfoxide (DMSO) reductase was investigated in the purple phototrophic bacterium Rhodobacter capsulatus. Under phototrophic, anaerobic conditions with malate as carbon source, DMSO caused an approximately 150-fold induction of DMSO reductase activity. The response regulator DorR was required for DMSO-dependent induction and also appeared to slightly repress DMSO reductase expression in the absence of substrate. Likewise, when pyruvate replaced malate as carbon source there was an induction of DMSO reductase activity in cells grown at low light intensity (16 W m(-2)) and again this induction was dependent on DorR. The level of DMSO reductase activity in aerobically grown cells was elevated when pyruvate replaced malate as carbon source. One possible explanation for this is that acetyl phosphate, produced from pyruvate, may activate expression of DMSO reductase by direct phosphorylation of DorR, leading to low levels of induction of dor gene expression in the absence of DMSO. A mutant lacking the global response regulator of photosynthesis gene expression, RegA, exhibited high levels of DMSO reductase in the absence of DMSO, when grown phototrophically with malate as carbon source. This suggests that phosphorylated RegA acts as a repressor of dor operon expression under these conditions. It has been proposed elsewhere that RegA-dependent expression is negatively regulated by the cytochrome cbb(3) oxidase. A cco mutant lacking cytochrome cbb(3) exhibited significantly higher levels of Phi[dorA::lacZ] activity in the presence of DMSO compared to wild-type cells and this is consistent with the above model. Pyruvate restored DMSO reductase expression in the regA mutant to the same pattern as found in wild-type cells. These data suggest that R. capsulatus contains a regulator of DMSO respiration that is distinct from DorR and RegA, is activated in the presence of pyruvate, and acts as a negative regulator of DMSO reductase expression.
Resumo:
The cytochrome P450 (P450)-mediated biotransformation of tamoxifen is important in determining both the clearance of the drug and its conversion to the active metabolite, trans-4-hydroxytamoxifen. Biotransformation by P450 forms expressed extrahepatically, such as in the breast and endometrium, may be particularly important in determining tissue-specific effects of tamoxifen. Moreover, tamoxifen may serve as a useful probe drug to examine the regioselectivity of different forms. Tamoxifen metabolism was investigated in vitro using recombinant human P450s. Forms CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4, 3A5, and 3A7 were coexpressed in Escherichia coli with recombinant human NADPH-cytochrome P450 reductase. Bacterial membranes were harvested and incubated with tamoxifen or trans-4-hydroxytamoxifen under conditions supporting P450-mediated catalysis. CYP2D6 was the major catalyst of 4-hydroxylation at low tamoxifen concentrations (170 +/- 20 pmol/40 min/0.2 nmol P450 using 18 muM tamoxifen), but CYP2B6 showed significant activity at high substrate concentrations (28.1 +/- 0.8 and 3.1 +/- 0.5 nmol/120 min/0.2 nmol P450 for CYP2D6 and CYP2B6, respectively, using 250 muM tamoxifen). These two forms also catalyzed 4'-hydroxylation (13.0 +/- 1.9 and 1.4 +/- 0.1 nmol/120 min/0.2 nmol P450, respectively, for CYP2B6 and CYP2D6 at 250 muM tamoxifen; 0.51 +/- 0.08 pmol/40 min/0.2 nmol P450 for CYP2B6 at 18 muM tamoxifen). Tamoxifen N-demethylation was mediated by CYP2D6, 1A1, 1A2, and 3A4, at low substrate concentrations, with contributions by CYP1B1, 2C9, 2C19 and 3A5 at high concentrations. CYP1B1 was the principal catalyst of 4-hydroxytamoxifen trans-cis isomerization but CYP2B6 and CYP2C19 also contributed.
Resumo:
Disposition kinetics of [H-3] palmitate and its low-molecular-weight metabolites in perfused rat livers were studied using the multiple-indicator dilution technique, a selective assay for [H-3] palmitate and its low-molecular-weight metabolites, and several physiologically based pharmacokinetic models. The level of liver fatty acid binding protein (L-FABP), other intrahepatic binding proteins (microsomal protein, albumin, and glutathione S-transferase) and the outflow profiles of [H-3] palmitate and metabolites were measured in four experimentalgroups of rats: 1) males; 2) clofibrate-treated males; 3) females; and 4) pregnant females. A slow-diffusion/bound model was found to better describe the hepatic disposition of unchanged [H-3] palmitate than other pharmacokinetic models. The L-FABP levels followed the order: pregnant female > clofibrate-treated male > female > male. Levels of other intrahepatic proteins did not differ significantly. The hepatic extraction ratio and mean transit time for unchanged palmitate, as well as the production of low-molecular-weight metabolites of palmitate and their retention in the liver, increased with increasing L-FABP levels. Palmitate metabolic clearance, permeability-surface area product, retention of palmitate by the liver, and cytoplasmic diffusion constant for unchanged [H-3] palmitate also increased with increasing L-FABP levels. It is concluded that the variability in hepatic pharmacokinetics of unchanged [H-3] palmitate and its low-molecular-weight metabolites in perfused rat livers is related to levels of L-FABP and not those of other intrahepatic proteins.
Resumo:
In response to recent reports of contamination of the nearshore marine environment along the Queensland coast by herbicides (including areas inside the Great Barrier Reef Marine Park), an ecotoxicological assessment was conducted of the impact of the herbicides diuron and atrazine on scleractinian corals. Pulse-amplitude modulated (PAM) chlorophyll fluorescence techniques were used to assess the herbicide effects on the symbiotic dinoflagellates within the tissues (in hospite) of 4 species of coral (Acropora formosa, Montipora digitata, Porites cylindrica, Seriatopora hystrix) in static toxicity tests, and in freshly isolated symbiotic dinoflagellates from Stylophora pistillata. Using change in the effective quantum yield (DeltaF/F-m') as an effect criterion, diuron (no observable effect concentration, NOEC = 0.3 mug 1(-1); lowest observable effect concentration, LOEC = 1 mug 1(-1); median effective concentration, EC50 4 to 6 mug 1(-1)) was found to be more toxic than atrazine (NOEC = 1 mug 1(-1), LOEC = 3 mug 1(-1), EC50 40 to 90 mug 1(-1)) in short-term (10 h) toxicity tests. In the tests with isolated algae, significant reductions in DeltaF/F-m' were recorded as low as 0.25 mug 1(-1) diuron (LOEC, EC50 = 5 mug 1(-1)). Time-course experiments indicated that the effects of diuron were rapid and reversible. At 10 mug 1(-1) diuron, DeltaF/F-m' was reduced by 25% in 20 to 30 min, and by 50% in 60 to 90 min. Recovery of DeltaF/F-m' in corals exposed to 10 mug 1(-1) diuron and then transferred to running seawater was slower, returning to within 10% of control values inside 1 to 7 h. The effect of a reduction in salinity (35 to 27%) on diuron toxicity (at 1 and 3 mug 1(-1) diuron) was tested to examine the potential consequences of contaminated coastal flood plumes inundating inshore reefs. DeltaF/F-m' was reduced in the diuron-exposed corals, but there was no significant interaction between diuron and reduced salinity seawater within the 10 h duration of the test. Exposure to higher (100 and 1000 mug 1(-1)) diuron concentrations for 96 h caused a reduction in DeltaF/F-m' the ratio variable to maximal fluorescence (F,1F.), significant loss of symbiotic dinoflagellates and pronounced tissue retraction, causing the corals to pale or bleach. The significance of the results in relation to diuron contamination of the coastal marine environment from terrestrial sources (mainly agricultural) and marine sources (antifouling paints) are discussed.
Resumo:
The mycelium and young fruiting bodies of Agaricus blazei were submitted to supercritical CO2 extraction, in a modified commercial flow apparatus, at temperatures from 40 to 80 ºC, pressures up to 600 bar and CO2 flow-rates from 2.0 to 9.0 g.min-1. The best extraction conditions of secondary metabolites, whereby the degree of solubilization (g extract/100 g of fungi) is the highest, was obtained with pure CO2 at 400 bar, 70 ºC and a CO2 flow rate of 5.7g.min-1. The extract in that conditions were analysed by GC-Ms. In order to increase the extraction yield of secondary metabolites, which are mostly present in glycolipid fractions, a polar compound (ethanol) was used as co-solvent in the proportions of 5 and 10 % (mol/mol). The presence of ethanol increased the yield when compared with the extraction with pure CO2. Moreover, a simple model was applied to the supercritical CO2 extraction of secondary metabolites from Agaricus blazei.