854 resultados para Distributed system architecture
                                
Resumo:
Moving objects database systems are the most challenging sub-category among Spatio-Temporal database systems. A database system that updates in real-time the location information of GPS-equipped moving vehicles has to meet even stricter requirements. Currently existing data storage models and indexing mechanisms work well only when the number of moving objects in the system is relatively small. This dissertation research aimed at the real-time tracking and history retrieval of massive numbers of vehicles moving on road networks. A total solution has been provided for the real-time update of the vehicles' location and motion information, range queries on current and history data, and prediction of vehicles' movement in the near future. ^ To achieve these goals, a new approach called Segmented Time Associated to Partitioned Space (STAPS) was first proposed in this dissertation for building and manipulating the indexing structures for moving objects databases. ^ Applying the STAPS approach, an indexing structure of associating a time interval tree to each road segment was developed for real-time database systems of vehicles moving on road networks. The indexing structure uses affordable storage to support real-time data updates and efficient query processing. The data update and query processing performance it provides is consistent without restrictions such as a time window or assuming linear moving trajectories. ^ An application system design based on distributed system architecture with centralized organization was developed to maximally support the proposed data and indexing structures. The suggested system architecture is highly scalable and flexible. Finally, based on a real-world application model of vehicles moving in region-wide, main issues on the implementation of such a system were addressed. ^
                                
Resumo:
Moving objects database systems are the most challenging sub-category among Spatio-Temporal database systems. A database system that updates in real-time the location information of GPS-equipped moving vehicles has to meet even stricter requirements. Currently existing data storage models and indexing mechanisms work well only when the number of moving objects in the system is relatively small. This dissertation research aimed at the real-time tracking and history retrieval of massive numbers of vehicles moving on road networks. A total solution has been provided for the real-time update of the vehicles’ location and motion information, range queries on current and history data, and prediction of vehicles’ movement in the near future. To achieve these goals, a new approach called Segmented Time Associated to Partitioned Space (STAPS) was first proposed in this dissertation for building and manipulating the indexing structures for moving objects databases. Applying the STAPS approach, an indexing structure of associating a time interval tree to each road segment was developed for real-time database systems of vehicles moving on road networks. The indexing structure uses affordable storage to support real-time data updates and efficient query processing. The data update and query processing performance it provides is consistent without restrictions such as a time window or assuming linear moving trajectories. An application system design based on distributed system architecture with centralized organization was developed to maximally support the proposed data and indexing structures. The suggested system architecture is highly scalable and flexible. Finally, based on a real-world application model of vehicles moving in region-wide, main issues on the implementation of such a system were addressed.
                                
Resumo:
The automated transfer of flight logbook information from aircrafts into aircraft maintenance systems leads to reduced ground and maintenance time and is thus desirable from an economical point of view. Until recently, flight logbooks have not been managed electronically in aircrafts or at least the data transfer from aircraft to ground maintenance system has been executed manually. Latest aircraft types such as the Airbus A380 or the Boeing 787 do support an electronic logbook and thus make an automated transfer possible. A generic flight logbook transfer system must deal with different data formats on the input side – due to different aircraft makes and models – as well as different, distributed aircraft maintenance systems for different airlines as aircraft operators. This article contributes the concept and top level distributed system architecture of such a generic system for automated flight log data transfer. It has been developed within a joint industry and applied research project. The architecture has already been successfully evaluated in a prototypical implementation.
                                
Resumo:
This work addresses the problem of traction control in mobile wheeled robots in the particular case of the RoboCup Middle Size League (MSL). The slip control problem is formulated using simple friction models for ISePorto Team robots with a differential wheel configuration. Traction was also characterized experimentally in the MSL scenario for relevant game events. This work proposes a hierarchical traction control architecture which relies in local slip detection and control at each wheel, with relevant information being relayed to a higher level responsible for global robot motion control. A dedicated one axis control embedded hardware subsystem allowing complex local control, high frequency current sensing and odometric information procession was developed. This local axis control board is integrated in a distributed system using CAN bus communications. The slipping observer was implemented in the axis control hardware nodes integrated in the ISePorto robots and was used to control and detect loss of for traction. %and to detect the ball in the kicking device. An external vision system was used to perform a qualitative analysis of the slip detection and observer performance results are presented.
                                
Resumo:
The control of the right application of medical protocols is a key issue in hospital environments. For the automated monitoring of medical protocols, we need a domain-independent language for their representation and a fully, or semi, autonomous system that understands the protocols and supervises their application. In this paper we describe a specification language and a multi-agent system architecture for monitoring medical protocols. We model medical services in hospital environments as specialized domain agents and interpret a medical protocol as a negotiation process between agents. A medical service can be involved in multiple medical protocols, and so specialized domain agents are independent of negotiation processes and autonomous system agents perform monitoring tasks. We present the detailed architecture of the system agents and of an important domain agent, the database broker agent, that is responsible of obtaining relevant information about the clinical history of patients. We also describe how we tackle the problems of privacy, integrity and authentication during the process of exchanging information between agents.
                                
Resumo:
Today’s commercial web sites are under heavy user load and they are expected to be operational and available at all times. Distributed system architectures have been developed to provide a scalable and failure tolerant high availability platform for these web based services. The focus on this thesis was to specify and implement resilient and scalable locally distributed high availability system architecture for a web based service. Theory part concentrates on the fundamental characteristics of distributed systems and presents common scalable high availability server architectures that are used in web based services. In the practical part of the thesis the implemented new system architecture is explained. Practical part also includes two different test cases that were done to test the system's performance capacity.
                                
Resumo:
The activated sludge process - the main biological technology usually applied to wastewater treatment plants (WWTP) - directly depends on live beings (microorganisms), and therefore on unforeseen changes produced by them. It could be possible to get a good plant operation if the supervisory control system is able to react to the changes and deviations in the system and can take the necessary actions to restore the system’s performance. These decisions are often based both on physical, chemical, microbiological principles (suitable to be modelled by conventional control algorithms) and on some knowledge (suitable to be modelled by knowledge-based systems). But one of the key problems in knowledge-based control systems design is the development of an architecture able to manage efficiently the different elements of the process (integrated architecture), to learn from previous cases (spec@c experimental knowledge) and to acquire the domain knowledge (general expert knowledge). These problems increase when the process belongs to an ill-structured domain and is composed of several complex operational units. Therefore, an integrated and distributed AI architecture seems to be a good choice. This paper proposes an integrated and distributed supervisory multi-level architecture for the supervision of WWTP, that overcomes some of the main troubles of classical control techniques and those of knowledge-based systems applied to real world systems
                                
Resumo:
A distributed power architecture for aerospace application with very restrictive specifications is analyzed. Parameters as volume, weight and losses are analyzed for the considered power architectures. In order to protect the 3 phase generator against high load steps, an intermediate bus (based in a high capacitance) to provide energy to the loads during the high load steps is included. Prototypes of the selected architecture for the rectifier and EMI filter are built and the energy control is validated.
                                
Resumo:
Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available protection concepts and devices for AC systems in a DC network, were presented. A study was also conducted on the effect of changing the distribution architecture and distributing the storage assets on the various zones of the network on the system's dynamic security and stability. A practical shipboard power system was studied as an example of a hybrid AC/DC power system involving pulsed loads. Generally, the proposed hybrid AC/DC power system, besides most of the ideas, controls and algorithms presented in this dissertation, were experimentally verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed.
                                
Resumo:
Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available protection concepts and devices for AC systems in a DC network, were presented. A study was also conducted on the effect of changing the distribution architecture and distributing the storage assets on the various zones of the network on the system’s dynamic security and stability. A practical shipboard power system was studied as an example of a hybrid AC/DC power system involving pulsed loads. Generally, the proposed hybrid AC/DC power system, besides most of the ideas, controls and algorithms presented in this dissertation, were experimentally verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed.
                                
Resumo:
The idea of Grid Computing originated in the nineties and found its concrete applications in contexts like the SETI@home project where a lot of computers (offered by volunteers) cooperated, performing distributed computations, inside the Grid environment analyzing radio signals trying to find extraterrestrial life. The Grid was composed of traditional personal computers but, with the emergence of the first mobile devices like Personal Digital Assistants (PDAs), researchers started theorizing the inclusion of mobile devices into Grid Computing; although impressive theoretical work was done, the idea was discarded due to the limitations (mainly technological) of mobile devices available at the time. Decades have passed, and now mobile devices are extremely more performant and numerous than before, leaving a great amount of resources available on mobile devices, such as smartphones and tablets, untapped. Here we propose a solution for performing distributed computations over a Grid Computing environment that utilizes both desktop and mobile devices, exploiting the resources from day-to-day mobile users that alternatively would end up unused. The work starts with an introduction on what Grid Computing is, the evolution of mobile devices, the idea of integrating such devices into the Grid and how to convince device owners to participate in the Grid. Then, the tone becomes more technical, starting with an explanation on how Grid Computing actually works, followed by the technical challenges of integrating mobile devices into the Grid. Next, the model, which constitutes the solution offered by this study, is explained, followed by a chapter regarding the realization of a prototype that proves the feasibility of distributed computations over a Grid composed by both mobile and desktop devices. To conclude future developments and ideas to improve this project are presented.
                                
Resumo:
This dissertation aims to guarantee the integration of a mobile autonomous robot equipped with many sensors in a multi-agent distributed and georeferenced surveillance system. The integration of a mobile autonomous robot in this system leads to new features that will be available to clients of surveillance system may use. These features may be of two types: using the robot as an agent that will act in the environment or by using the robot as a mobile set of sensors. As an agent in the system, the robot can move to certain locations when alerts are received, in order to acknowledge the underlying events or take to action in order to assist in resolving this event. As a sensor platform in the system, it is possible to access information that is read from the sensors of the robot and access complementary measurements to the ones taken by other sensors in the multi-agent system. To integrate this mobile robot in an effective way it is necessary to extend the current multi-agent system architecture to make the connection between the two systems and to integrate the functionalities provided by the robot into the multi-agent system.
                                
Resumo:
The nature of client-server architecture implies that some modules are delivered to customers. These publicly distributed commercial software components are under risk, because users (and simultaneously potential malefactors) have physical access to some components of the distributed system. The problem becomes even worse if interpreted programming languages are used for creation of client side modules. The language Java, which was designed to be compiled into platform independent byte-code is not an exception and runs the additional risk. Along with advantages like verifying the code before execution (to ensure that program does not produce some illegal operations)Java has some disadvantages. On a stage of byte-code a java program still contains comments, line numbers and some other instructions, which can be used for reverse-engineering. This Master's thesis focuses on protection of Java code based client-server applications. I present a mixture of methods to protect software from tortious acts. Then I shall realize all the theoretical assumptions in a practice and examine their efficiency in examples of Java code. One of the criteria's to evaluate the system is that my product is used for specialized area of interactive television.
                                
Resumo:
Mobiililaitteisiin tehdyt sovellukset ovat nykyään laajassa käytössä. Mobiilisovellukset tarjoavat käyttäjälleen usein tietyn ennalta määritellyn toiminnallisuuden eivätkä ne pysty mukautumaan vaihtelevaan käyttöympäristöönsä. Jos sovellus olisi tietoinen käyttöympäristöstään ja sen muutoksista, se voisi tarjota käyttäjälleen tilanteeseen sopivia ominaisuuksia. Käyttöympäristöstään tietoiset hajautetut sovellukset tarvitsevat kuitenkin huomattavasti perinteisiä sovelluksia monimutkaisemman arkkitehtuurin toimiakseen. Tässä työssä esitellään hajautetuille ja kontekstitietoisille sovelluksille tarkoitettu ohjelmistoarkkitehtuuri. Työ perustuu Oulun yliopiston CAPNET-tutkimusprojektissa kehitettyyn, mobiilisovelluksille tarkoitettuun arkkitehtuuriin. Tämän työn tarkoituksena on tarjota ratkaisuja niihin puutteisiin, jotka tulivat esille CAPNET-arkkitehtuurin kehitys- ja testausvaiheessa. Esimerkiksi arkkitehtuurin komponenttien määrittelyä tulisi tarkentaa ja ne tulisi jakaa horisontaalisiin kerroksiin niiden ominaisuuksien ja alustariippuvuuden mukaisesti. Työssä luodaan katsaus olemassa oleviin teknologioihin jotka tukevat hajautettujen ja kontekstitietoisten järjestelmien kehittämistä. Myös niiden soveltumista CAPNET-arkkitehtuuriin analysoidaan. Työssä esitellään CAPNET-arkkitehtuuri ja ehdotetaan uutta arkkitehtuuria ja komponenttien kerrosjaottelua. Ehdotuksessa arkkitehtuurin komponentit ja järjestelmän rakenne määritellään ja mallinnetaan UML-menetelmällä. Työn tuloksena on arkkitehtuurimäärittely, joka jakaa nykyisen arkkitehtuurin komponentit kerroksiin. Komponenttien rajapinnat on määritelty selkeästi ja tarkasti. Työ tarjoaa myös projektiryhmälle hyvän lähtökohdan uuden arkkitehtuurin suunnittelulle ja toteuttamiselle.
                                
Resumo:
In this thesis the bifurcational behavior of the solutions of Langford system is analysed. The equilibriums of the Langford system are found, and the stability of equilibriums is discussed. The conditions of loss of stability are found. The periodic solution of the system is approximated. We consider three types of boundary condition for Langford spatially distributed system: Neumann conditions, Dirichlet conditions and Neumann conditions with additional requirement of zero average. We apply the Lyapunov-Schmidt method to Langford spatially distributed system for asymptotic approximation of the periodic mode. We analyse the influence of the diffusion on the behavior of self-oscillations. As well in the present work we perform numerical experiments and compare it with the analytical results.
 
                    