557 resultados para Distribuciones discretas


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La Gestión Forestal Sostenible se define como “la administración y uso de los bosques y tierras forestales de forma e intensidad tales que mantengan su biodiversidad, productividad, capacidad de regeneración, vitalidad y su potencial para atender, ahora y en el futuro, las funciones ecológicas, económicas y sociales relevantes a escala local, nacional y global, y que no causan daño a otros ecosistemas” (MCPFE Conference, 1993). Dentro del proceso los procesos de planificación, en cualquier escala, es necesario establecer cuál será la situación a la que se quiere llegar mediante la gestión. Igualmente, será necesario conocer la situación actual, pues marcará la situación de partida y condicionará el tipo de actuaciones a realizar para alcanzar los objetivos fijados. Dado que, los Proyectos de Ordenación de Montes y sus respectivas revisiones son herramientas de planificación, durante la redacción de los mismos, será necesario establecer una serie de objetivos cuya consecución pueda verificarse de forma objetiva y disponer de una caracterización de la masa forestal que permita conocer la situación de partida. Esta tesis se centra en problemas prácticos, propios de una escala de planificación local o de Proyecto de Ordenación de Montes. El primer objetivo de la tesis es determinar distribuciones diamétricas y de alturas de referencia para masas regulares por bosquetes, empleando para ello el modelo conceptual propuesto por García-Abril et al., (1999) y datos procedentes de las Tablas de producción de Rojo y Montero (1996). Las distribuciones de referencia obtenidas permitirán guiar la gestión de masas irregulares y regulares por bosquetes. Ambos tipos de masas aparecen como una alternativa deseable en aquellos casos en los que se quiere potenciar la biodiversidad, la estabilidad, la multifuncionalidad del bosque y/o como alternativa productiva, especialmente indicada para la producción de madera de calidad. El segundo objetivo de la Tesis está relacionado con la necesidad de disponer de una caracterización adecuada de la masa forestal durante la redacción de los Proyectos de Ordenación de Montes y de sus respectivas revisiones. Con el fin de obtener estimaciones de variables forestales en distintas unidades territoriales de potencial interés para la Ordenación de Montes, así como medidas de la incertidumbre en asociada dichas estimaciones, se extienden ciertos resultados de la literatura de Estimación en Áreas Pequeñas. Mediante un caso de estudio, se demuestra el potencial de aplicación de estas técnicas en inventario forestales asistidos con información auxiliar procedente de sensores láser aerotransportados (ALS). Los casos de estudio se realizan empleando datos ALS similares a los recopilados en el marco del Plan Nacional de Ortofotografía Aérea (PNOA). Los resultados obtenidos muestran que es posible aumentar la eficiencia de los inventarios forestales tradicionales a escala de proyecto de Ordenación de Montes, mediante la aplicación de estimadores EBLUP (Empirical Best Linear Unbiased Predictor) con modelos a nivel de elemento poblacional e información auxiliar ALS similar a la recopilada por el PNOA. ABSTRACT According to MCPFE (1993) Sustainable Forest Management is “the stewardship and use of forests and forest lands in a way, and at a rate, that maintains their biodiversity, productivity, regeneration capacity, vitality and their potential to fulfill, now and in the future, relevant ecological, economic and social functions, at local, national, and global levels, and that does not cause damage to other ecosystems”. For forest management planning, at any scale, we must determine what situation is hoped to be achieved through management. It is also necessary to know the current situation, as this will mark the starting point and condition the type of actions to be performed in order to meet the desired objectives. Forest management at a local scale is no exception. This Thesis focuses on typical problems of forest management planning at a local scale. The first objective of this Thesis is to determine management objectives for group shelterwood management systems in terms of tree height and tree diameter reference distributions. For this purpose, the conceptual model proposed by García-Abril et al., (1999) is applied to the yield tables for Pinus sylvestris in Sierra de Guadrrama (Rojo y Montero, 1996). The resulting reference distributions will act as a guide in the management of forests treated under the group shelterwood management systems or as an approximated reference for the management of uneven aged forests. Both types of management systems are desirable in those cases where forest biodiversity, stability and multifunctionality are pursued goals. These management systems are also recommended as alternatives for the production of high quality wood. The second objective focuses on the need to adequately characterize the forest during the decision process that leads to local management. In order to obtain estimates of forest variables for different management units of potential interest for forest planning, as well as the associated measures of uncertainty in these estimates, certain results from Small Area Estimation Literature are extended to accommodate for the need of estimates and reliability measures in very small subpopulations containing a reduced number of pixels. A case study shows the potential of Small Area Estimation (SAE) techniques in forest inventories assisted with remotely sensed auxiliary information. The influence of the laser pulse density in the quality of estimates in different aggregation levels is analyzed. This study considers low laser pulse densities (0.5 returns/m2) similar to, those provided by large-scale Airborne Laser Scanner (ALS) surveys, such as the one conducted by the Spanish National Geographic Institute for about 80% of the Spanish territory. The results obtained show that it is possible to improve the efficiency of traditional forest inventories at local scale using EBLUP (Empirical Best Linear Unbiased Predictor) estimators based on unit level models and low density ALS auxiliary information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El objetivo del presente trabajo de investigación es explorar nuevas técnicas de implementación, basadas en grafos, para las Redes de Neuronas, con el fin de simplificar y optimizar las arquitecturas y la complejidad computacional de las mismas. Hemos centrado nuestra atención en una clase de Red de Neuronas: las Redes de Neuronas Recursivas (RNR), también conocidas como redes de Hopfield. El problema de obtener la matriz sináptica asociada con una RNR imponiendo un determinado número de vectores como puntos fijos, no está en absoluto resuelto, el número de vectores prototipo que pueden ser almacenados en la red, cuando se utiliza la ley de Hebb, es bastante limitado, la red se satura rápidamente cuando se pretende almacenar nuevos prototipos. La ley de Hebb necesita, por tanto, ser revisada. Algunas aproximaciones dirigidas a solventar dicho problema, han sido ya desarrolladas. Nosotros hemos desarrollado una nueva aproximación en la forma de implementar una RNR en orden a solucionar estos problemas. La matriz sináptica es obtenida mediante la superposición de las componentes de los vectores prototipo, sobre los vértices de un Grafo, lo cual puede ser también interpretado como una coloración de dicho grafo. Cuando el periodo de entrenamiento se termina, la matriz de adyacencia del Grafo Resultante o matriz de pesos, presenta ciertas propiedades por las cuales dichas matrices serán llamadas tetraédricas. La energía asociada a cualquier estado de la red es representado por un punto (a,b) de R2. Cada uno de los puntos de energía asociados a estados que disten lo mismo del vector cero está localizado sobre la misma línea de energía de R2. El espacio de vectores de estado puede, por tanto, clasificarse en n clases correspondientes a cada una de las n diferentes distancias que puede tener cualquier vector al vector cero. La matriz (n x n) de pesos puede reducirse a un n-vector; de esta forma, tanto el tiempo de computación como el espacio de memoria requerido par almacenar los pesos, son simplificados y optimizados. En la etapa de recuperación, es introducido un vector de parámetros R2, éste es utilizado para controlar la capacidad de la red: probaremos que lo mayor es la componente a¡, lo menor es el número de puntos fijos pertenecientes a la línea de energía R¡. Una vez que la capacidad de la red ha sido controlada mediante este parámetro, introducimos otro parámetro, definido como la desviación del vector de pesos relativos, este parámetro sirve para disminuir ostensiblemente el número de parásitos. A lo largo de todo el trabajo, hemos ido desarrollando un ejemplo, el cual nos ha servido para ir corroborando los resultados teóricos, los algoritmos están escritos en un pseudocódigo, aunque a su vez han sido implamentados utilizando el paquete Mathematica 2.2., mostrándolos en un volumen suplementario al texto.---ABSTRACT---The aim of the present research is intended to explore new specifícation techniques of Neural Networks based on Graphs to be used in the optimization and simplification of Network Architectures and Computational Complexhy. We have focused our attention in a, well known, class of Neural Networks: the Recursive Neural Networks, also known as Hopfield's Neural Networks. The general problem of constructing the synaptic matrix associated with a Recursive Neural Network imposing some vectors as fixed points is fer for completery solved, the number of prototype vectors (learning patterns) which can be stored by Hebb's law is rather limited and the memory will thus quickly reach saturation if new prototypes are continuously acquired in the course of time. Hebb's law needs thus to be revised in order to allow new prototypes to be stored at the expense of the older ones. Some approaches related with this problem has been developed. We have developed a new approach of implementing a Recursive Neural Network in order to sob/e these kind of problems, the synaptic matrix is obtained superposing the components of the prototype vectors over the vértices of a Graph which may be interpreted as a coloring of the Graph. When training is finished the adjacency matrix of the Resulting Graph or matrix of weights presents certain properties for which it may be called a tetrahedral matrix The energy associated to any possible state of the net is represented as a point (a,b) in R2. Every one of the energy points associated with state-vectors having the same Hamming distance to the zero vector are located over the same energy Une in R2. The state-vector space may be then classified in n classes according to the n different possible distances firom any of the state-vectors to the zero vector The (n x n) matrix of weights may also be reduced to a n-vector of weights, in this way the computational time and the memory space required for obtaining the weights is optimized and simplified. In the recall stage, a parameter vectora is introduced, this parameter is used for controlling the capacity of the net: it may be proved that the bigger is the r, component of J, the lower is the number of fixed points located in the r¡ energy line. Once the capacity of the net has been controlled by the ex parameter, we introduced other parameter, obtained as the relative weight vector deviation parameter, in order to reduce the number of spurious states. All along the present text, we have also developed an example, which serves as a prove for the theoretical results, the algorithms are shown in a pseudocode language in the text, these algorithm so as the graphics have been developed also using the Mathematica 2.2. mathematical package which are shown in a supplementary volume of the text.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Las poblaciones de salmónidos en la Península Ibérica (trucha común, Salmo trutta; y salmón atlántico, Salmo salar) se encuentran cerca del límite meridional de sus distribuciones naturales, y por tanto tienen una gran importancia para la conservación de estas especies. En la presente Tesis se han investigado algunos aspectos de la reproducción y de la gestión del hábitat, con el objeto de mejorar el conocimiento acerca de estas poblaciones meridionales de salmónidos. Se ha estudiado la reproducción de la trucha común en el río Castril (Andalucía, sur de España), donde se ha observado que la freza ocurre desde diciembre hasta abril con el máximo de actividad en febrero. Este hecho representa uno de los periodos reproductivos más tardíos y con mayor duración de toda la distribución natural de la especie. Además, actualmente se sabe que el resto de poblaciones andaluzas tienen periodos de reproducción similares (retrasados y extendidos). Análisis en la escala de la distribución natural de la trucha común, han mostrado que la latitud explica parcialmente tanto la fecha media de reproducción (R2 = 62.8%) como la duración del periodo de freza (R2 = 24.4%) mediante relaciones negativas: a menor latitud, la freza ocurre más tarde y durante más tiempo. Es verosímil que un periodo de freza largo suponga una ventaja para la supervivencia de las poblaciones de trucha en hábitats impredecibles, y por tanto se ha propuesto la siguiente hipótesis, que deberá ser comprobada en el futuro: la duración de la freza es mayor en hábitats impredecibles que en aquellos más predecibles. La elevada tasa de solapamiento de frezaderos observada en el río Castril no se explica únicamente por una excesiva densidad de reproductores. Las hembras de trucha eligieron lugares específicos para construir sus frezaderos en vez de dispersarse aleatoriamente dentro del hábitat adecuado para la freza que tenían disponible. Estas observaciones sugieren que las hembras tienen algún tipo de preferencia por solapar sus frezaderos. Además, en ríos calizos como el Castril, las gravas pueden ser muy cohesivas y difíciles de excavar, por lo que el solapamiento de frezaderos puede suponer una ventaja para la hembra, porque la excavación en sustratos que han sido previamente removidos por frezas anteriores requerirá menos gasto de energía que en sustratos con gravas cohesivas que no han sido alteradas. Por tanto, se ha propuesto la siguiente hipótesis, que deberá ser comprobada en el futuro: las hembras tienen una mayor preferencia por solapar sus frezaderos en ríos con sustratos cohesivos que en ríos con sustratos de gravas sueltas. En el marco de la gestión del hábitat, se han empleado dos enfoques diferentes para la evaluación del hábitat físico, con el objeto de cuantificar los cambios potenciales en la disponibilidad de hábitat, antes de la implementación real de determinadas medidas sobre el hábitat. En primer lugar, se ha evaluado el hábitat físico del salmón atlántico en el río Pas (Cantabria, norte de España), en la escala del microhábitat, empleando la metodología IFIM junto con un modelo hidráulico bidimensional (River2D). Se han simulado una serie de acciones de mejora del hábitat y se han cuantificado los cambios en el hábitat bajo estas acciones. Los resultados mostraron un aumento muy pequeño en la disponibilidad de hábitat, por lo que no sería efectivo implementar estas acciones en este tramo fluvial. En segundo lugar, se ha evaluado el hábitat físico de la trucha común en el río Tajuña (Guadalajara, centro de España), en la escala del mesohábitat, empleando la metodología MesoHABSIM. Actualmente, el río Tajuña está alterado por los usos agrícolas de sus riberas, y por tanto se ha diseñado una restauración para mitigar estos impactos y para llevar al río a un estado más natural. Se ha cuantificado la disponibilidad de hábitat tras la restauración planteada, y los resultados han permitido identificar los tramos en los que la restauración resultaría más eficaz. ABSTRACT Salmonid populations in the Iberian Peninsula (brown trout, Salmo trutta; and Atlantic salmon, Salmo salar) are close to the southern limit of their natural ranges, and therefore they are of great importance for the conservation of the species. In the present dissertation, some aspects of spawning and habitat management have been investigated, in order to improve the knowledge on these southern salmonid populations. Brown trout spawning have been studied in the river Castril (Andalusia, southern Spain), and it has been observed that spawning occurs from December until April with the maximum activity in February. This finding represents one of the most belated and protracted spawning periods within the natural range of the species. Furthermore, it is now known that the rest of Andalusian populations show similar (belated and extended) spawning periods. Broad-scale analyses throughout the brown trout natural range showed that latitude partly explained both spawning mean time (R2 = 62.8%) and spawning duration (R2 = 24.4%) by negative relationships: the lower the latitude, the later the spawning time and the longer the spawning period. It is plausible that a long spawning period would be an advantage for survival of trout populations in unpredictable habitats, and thus the following hypothesis has been proposed, which is yet to be tested: spawning duration is longer in unpredictable than in predictable habitats. High rate of redd superimposition observed in the river Castril was not only caused by high density of spawners. Trout females chose specific sites for redd construction instead of randomly dispersing over the suitable spawning habitat. These observations suggest that female spawners have some kind of preference for superimposing redds. Moreover, in limestone streams such as Castril, unused gravels can be very cohesive and hard to dig, and thus redd superimposition may be an advantage for female, because digging may require less energy expenditure in already used redd sites than in cohesive and embedded unused sites. Hence, the following hypothesis has been proposed, which is yet to be tested: females have a higher preference for superimposing redds in streambeds with cohesive and embedded substrates than in rivers with loose gravels. Within the topic of habitat management, two different approaches have been used for physical habitat assessment, in order to quantify the potential change in habitat availability, prior to the actual implementation of proposed habitat measures. Firstly, physical habitat for Atlantic salmon in the river Pas (Cantabria, northern Spain) has been assessed at the microhabitat scale, using the IFIM approach along with a two dimensional hydraulic model (River2D). Proposed habitat enhancement actions have been simulated and potential habitat change has been quantified. Results showed a very small increasing in habitat availability and therefore it is not worth to implement these measures in this stream reach. Secondly, physical habitat for brown trout in the river Tajuña (Guadalajara, central Spain) has been assessed at the mesohabitat scale, using the MesoHABSIM approach. The river Tajuña is currently impacted by surrounding agricultural uses, and thus restoration was designed to mitigate these impacts and to drive the river to a more natural state. Habitat availability after the planned restoration has been quantified, and the results have permitted to identify in which sites the restoration will be more effective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hay un ejemplar encuadernado con: Bandos divertidísimos contra los borrachos y borrachas, y gente aficionada al vino(NP849.91/3087).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hay un ejemplar encuadernado con: Discret rahonament, quiexa formal que fan contra el Micalet de la Seu, la Torre de Espioca, y la Torre de Paterna, sobre la gran visita que éste tingué en lo dia cinc de Deembre [sic] ... per veure y admirar tan magnífica obra y deliciosa vista ... Carlos Quart (que Deu guart) y el señor Don Fernando de Borbó ... : (XVIII/1105).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hay un ejemplar encuadernado con: Discret rahonament, quiexa formal que fan contra el Micalet de la Seu, la Torre de Espioca, y la Torre de Paterna, sobre la gran visita que éste tingué en lo dia cinc de Deembre [sic] ... per veure y admirar tan magnífica obra y deliciosa vista ... Carlos Quart (que Deu guart) y el señor Don Fernando de Borbó ... : (XVIII/1105).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hay un ejemplar encuadernado con: Discret rahonament, quiexa formal que fan contra el Micalet de la Seu, la Torre de Espioca, y la Torre de Paterna, sobre la gran visita que éste tingué en lo dia cinc de Deembre [sic] ... per veure y admirar tan magnífica obra y deliciosa vista ... Carlos Quart (que Deu guart) y el señor Don Fernando de Borbó ... : (XVIII/1105).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este trabajo se estudia la modelización y optimización de procesos industriales de separación mediante el empleo de mezclas de líquidos iónicos como disolventes. Los disolventes habitualmente empleados en procesos de absorción o extracción suelen ser componentes orgánicos muy volátiles y dañinos para la salud humana. Las innovadoras propiedades que presentan los líquidos iónicos, los convierten en alternativas adecuadas para solucionar estos problemas. La presión de vapor de estos compuestos es muy baja y apenas varía con la temperatura. Por tanto, estos compuestos apenas se evaporan incluso a temperaturas altas. Esto supone una gran ventaja en cuanto al empleo de estos compuestos como disolventes industriales ya que permite el reciclaje continuo del disolvente al final del proceso sin necesidad de introducir disolvente fresco debido a la evaporación del mismo. Además, al no evaporarse, estos compuestos no suponen un peligro para la salud humana por inhalación; al contrario que otros disolventes como el benceno. El único peligro para la salud que tienen estos compuestos es por tanto el de contacto directo o ingesta, aunque de hecho muchos Líquidos Iónicos son inocuos con lo cual no existe peligro para la salud ni siquiera a través de estas vías. Los procesos de separación estudiados en este trabajo, se rigen por la termodinámica de fases, concretamente el equilibrio líquido-vapor. Para la predicción de los equilibrios se ha optado por el empleo de modelos COSMO (COnductor-like Screening MOdel). Estos modelos tienen su origen en el empleo de la termodinámica de solvatación y en la mecánica cuántica. En el desarrollo de procesos y productos, químicos e ingenieros frecuentemente precisan de la realización de cálculos de predicción de equilibrios de fase. Previamente al desarrollo de los modelos COSMO, se usaban métodos de contribución de grupos como UNIFAC o modelos de coeficientes de actividad como NRTL.La desventaja de estos métodos, es que requieren parámetros de interacción binaria que únicamente pueden obtenerse mediante ajustes por regresión a partir de resultados experimentales. Debido a esto, estos métodos apenas tienen aplicabilidad para compuestos con grupos funcionales novedosos debido a que no se dispone de datos experimentales para llevar a cabo los ajustes por regresión correspondientes. Una alternativa a estos métodos, es el empleo de modelos de solvatación basados en la química cuántica para caracterizar las interacciones moleculares y tener en cuenta la no idealidad de la fase líquida. Los modelos COSMO, permiten la predicción de equilibrios sin la necesidad de ajustes por regresión a partir de resultados experimentales. Debido a la falta de resultados experimentales de equilibrios líquido-vapor de mezclas en las que se ven involucrados los líquidos iónicos, el empleo de modelos COSMO es una buena alternativa para la predicción de equilibrios de mezclas con este tipo de materiales. Los modelos COSMO emplean las distribuciones superficiales de carga polarizada (sigma profiles) de los compuestos involucrados en la mezcla estudiada para la predicción de los coeficientes de actividad de la misma, definiéndose el sigma profile de una molécula como la distribución de probabilidad de densidad de carga superficial de dicha molécula. Dos de estos modelos son COSMO-RS (Realistic Solvation) y COSMO-SAC (Segment Activity Coefficient). El modelo COSMO-RS fue la primera extensión de los modelos de solvatación basados en continuos dieléctricos a la termodinámica de fases líquidas mientras que el modelo COSMO-SAC es una variación de este modelo, tal y como se explicará posteriormente. Concretamente en este trabajo se ha empleado el modelo COSMO-SAC para el cálculo de los coeficientes de actividad de las mezclas estudiadas. Los sigma profiles de los líquidos iónicos se han obtenido mediante el empleo del software de química computacional Turbomole y el paquete químico-cuántico COSMOtherm. El software Turbomole permite optimizar la geometría de la molécula para hallar la configuración más estable mientras que el paquete COSMOtherm permite la obtención del perfil sigma del compuesto mediante el empleo de los datos proporcionados por Turbomole. Por otra parte, los sigma profiles del resto de componentes se han obtenido de la base de datos Virginia Tech-2005 Sigma Profile Database. Para la predicción del equilibrio a partir de los coeficientes de actividad se ha empleado la Ley de Raoult modificada. Se ha supuesto por tanto que la fracción de cada componente en el vapor es proporcional a la fracción del mismo componente en el líquido, dónde la constante de proporcionalidad es el coeficiente de actividad del componente en la mezcla multiplicado por la presión de vapor del componente y dividido por la presión del sistema. Las presiones de vapor de los componentes se han obtenido aplicando la Ley de Antoine. Esta ecuación describe la relación entre la temperatura y la presión de vapor y se deduce a partir de la ecuación de Clausius-Clapeyron. Todos estos datos se han empleado para la modelización de una separación flash usando el algoritmo de Rachford-Rice. El valor de este modelo reside en la deducción de una función que relaciona las constantes de equilibrio, composición total y fracción de vapor. Para llevar a cabo la implementación del modelado matemático descrito, se ha programado un código empleando el software MATLAB de análisis numérico. Para comprobar la fiabilidad del código programado, se compararon los resultados obtenidos en la predicción de equilibrios de mezclas mediante el código con los resultados obtenidos mediante el simulador ASPEN PLUS de procesos químicos. Debido a la falta de datos relativos a líquidos iónicos en la base de datos de ASPEN PLUS, se han introducido estos componentes como pseudocomponentes, de manera que se han introducido únicamente los datos necesarios de estos componentes para realizar las simulaciones. El modelo COSMO-SAC se encuentra implementado en ASPEN PLUS, de manera que introduciendo los sigma profiles, los volúmenes de la cavidad y las presiones de vapor de los líquidos iónicos, es posible predecir equilibrios líquido-vapor en los que se ven implicados este tipo de materiales. De esta manera pueden compararse los resultados obtenidos con ASPEN PLUS y como el código programado en MATLAB y comprobar la fiabilidad del mismo. El objetivo principal del presente Trabajo Fin de Máster es la optimización de mezclas multicomponente de líquidos iónicos para maximizar la eficiencia de procesos de separación y minimizar los costes de los mismos. La estructura de este problema es la de un problema de optimización no lineal con variables discretas y continuas, es decir, un problema de optimización MINLP (Mixed Integer Non-Linear Programming). Tal y como se verá posteriormente, el modelo matemático de este problema es no lineal. Por otra parte, las variables del mismo son tanto continuas como binarias. Las variables continuas se corresponden con las fracciones molares de los líquidos iónicos presentes en las mezclas y con el caudal de la mezcla de líquidos iónicos. Por otra parte, también se ha introducido un número de variables binarias igual al número de líquidos iónicos presentes en la mezcla. Cada una de estas variables multiplican a las fracciones molares de sus correspondientes líquidos iónicos, de manera que cuando dicha variable es igual a 1, el líquido se encuentra en la mezcla mientras que cuando dicha variable es igual a 0, el líquido iónico no se encuentra presente en dicha mezcla. El empleo de este tipo de variables obliga por tanto a emplear algoritmos para la resolución de problemas de optimización MINLP ya que si todas las variables fueran continuas, bastaría con el empleo de algoritmos para la resolución de problemas de optimización NLP (Non-Linear Programming). Se han probado por tanto diversos algoritmos presentes en el paquete OPTI Toolbox de MATLAB para comprobar cuál es el más adecuado para abordar este problema. Finalmente, una vez validado el código programado, se han optimizado diversas mezclas de líquidos iónicos para lograr la máxima recuperación de compuestos aromáticos en un proceso de absorción de mezclas orgánicas. También se ha usado este código para la minimización del coste correspondiente a la compra de los líquidos iónicos de la mezcla de disolventes empleada en la operación de absorción. En este caso ha sido necesaria la introducción de restricciones relativas a la recuperación de aromáticos en la fase líquida o a la pureza de la mezcla obtenida una vez separada la mezcla de líquidos iónicos. Se han modelizado los dos problemas descritos previamente (maximización de la recuperación de Benceno y minimización del coste de operación) empleando tanto únicamente variables continuas (correspondientes a las fracciones o cantidades molares de los líquidos iónicos) como variables continuas y binarias (correspondientes a cada uno de los líquidos iónicos implicados en las mezclas).