970 resultados para Dissolution rate (DR)
Resumo:
The bioavailability of BCS II compounds may be improved by an enhanced solubility and dissolution rate. Four carboxylic acid drugs were selected, which were flurbiprofen, etodolac, ibuprofen and gemfibrozil. The drugs were chosen because they are weak acids with poor aqueous solubility and should readily form salts. The counterions used for salt formation were: butylamine, pentylamine, hexylamine, octylamine, benzylamine, cyclohexylamine, tert-butylamine, 2-amino-2-methylpropan2-ol, 2-amino-2-methyl propan-1,3-ol and tromethamine. Solubility was partially controlled by the saturated solution pH with the butylamine counterion increasing the solution pH and solubility and dissolution to the greatest extent. As the chain length increased, solubility was reduced due to the increasing lipophilic nature of the counterion. The benzylamine and cyclohexylamine counterions produced crystalline, stable salts but did not improve solubility and dissolution significantly compared to the parent compound. The substitution of hydroxyl groups to tert-butylamine counterions produced an increase in solubility and dissolution. AMP2 resulted in the most enhanced solubility and dissolution compared to the parent drug but using the tris salt did not further improve solubility due to a very stable crystal lattice structure. The parent drugs were very difficult to compress due to orientation effects and lamination. Compacts were prepared of each parent drug and salt and their modulus of elasticity values were measured using a three-point bend (Young’s modulus, E0) were extrapolated to zero porosity and compared. Compressibility and E0 were improved with the butylamine, tert-butylamine, cyclohexylamine and AMP2 counterions. The most significant improvement in compression and E0 was with the AMP2 salts. Mechanical properties were related to the hydrogen bonding within the crystal lattice structure for the gemfibrozil salt series.
Resumo:
The adsorption of two qroups of nonionic surface active agents and a series of hiqh molecular weiqht hydrophilic polymer fractions onto a polystyrene latex and a drug substance diloxanide furoate B.P. has been investigated. The presence of pores within the drug surface has been demonstrated and this is shown to increase the adsorption of low molecular weight polymer species. Differences in the maximum amount of polymer adsorbed at both solid-solution interfaces have been ascribed to the different hydrophobicities of the surface as determined by contact angle measurements. Adsorbed layer thicknesses of polymer on polystyrene latex have been determined by three techniques: microelectrophoresis, intensity fluctuation spectroscopy and by viscometric means. These results, in combination with adsorption data, were used to interpret the configuration of the adsorbed polymer molecules at the interface. The type of druq suspension produced on adsorbing the different polymers in the absence of electrostatic stabilization was correlated with theoretical prediuctions of suspension characteristics deduced from potential energy diagrams, The agreement was good for the adsorption of short chain length surfactants, but for the polyvinylalcohols, discrepancies were found between experiment and theory. This was attributed to the inappropriate use of a mean segment density approximation within the adsorbed layer to calculate attractive potentials between particles. A maximum in the redispersibility values for suspensions coated with adsorbed nonylphenylethoxylates was attributed to "partial static stabilization" of the particles in conjunction with the attractive forces operating in the sediment between bare surface patches on neighbouring particles. No significant change in the dissolution of the drug was observed when nonylphenylethoxylates were adsorbed due to desorption upon contact with the dissolution medium. Pluronic F68 and all the polyvinylalcohol fractions caused a reduction in the dissolution rate which is explained by the decreased diffusion of drug' through the adsorbed polymer layer.
Resumo:
The rapid development of nanotechnology and wider applications of engineered nanomaterials (ENMs) in the last few decades have generated concerns regarding their environmental and health risks. After release into the environment, ENMs undergo aggregation, transformation, and, for metal-based nanomaterials, dissolution processes, which together determine their fate, bioavailability and toxicity to living organisms in the ecosystems. The rates of these processes are dependent on nanomaterial characteristics as well as complex environmental factors, including natural organic matter (NOM). As a ubiquitous component of aquatic systems, NOM plays a key role in the aggregation, dissolution and transformation of metal-based nanomaterials and colloids in aquatic environments.
The goal of this dissertation work is to investigate how NOM fractions with different chemical and molecular properties affect the dissolution kinetics of metal oxide ENMs, such as zinc oxide (ZnO) and copper oxide (CuO) nanoparticles (NPs), and consequently their bioavailability to aquatic vertebrate, with Gulf killifish (Fundulus grandis) embryos as model organisms.
ZnO NPs are known to dissolve at relatively fast rates, and the rate of dissolution is influenced by water chemistry, including the presence of Zn-chelating ligands. A challenge, however, remains in quantifying the dissolution of ZnO NPs, particularly for time scales that are short enough to determine rates. This dissertation assessed the application of anodic stripping voltammetry (ASV) with a hanging mercury drop electrode to directly measure the concentration of dissolved Zn in ZnO NP suspensions, without separation of the ZnO NPs from the aqueous phase. Dissolved zinc concentration measured by ASV ([Zn]ASV) was compared with that measured by inductively coupled plasma mass spectrometry (ICP-MS) after ultracentrifugation ([Zn]ICP-MS), for four types of ZnO NPs with different coatings and primary particle diameters. For small ZnO NPs (4-5 nm), [Zn]ASV was 20% higher than [Zn]ICP-MS, suggesting that these small NPs contributed to the voltammetric measurement. For larger ZnO NPs (approximately 20 nm), [Zn]ASV was (79±19)% of [Zn]ICP-MS, despite the high concentrations of ZnO NPs in suspension, suggesting that ASV can be used to accurately measure the dissolution kinetics of ZnO NPs of this primary particle size.
Using the ASV technique to directly measure dissolved zinc concentration, we examined the effects of 16 different NOM isolates on the dissolution kinetics of ZnO NPs in buffered potassium chloride solution. The observed dissolution rate constants (kobs) and dissolved zinc concentrations at equilibrium increased linearly with NOM concentration (from 0 to 40 mg-C L-1) for Suwannee River humic acid (SRHA), Suwannee River fulvic acid and Pony Lake fulvic acid. When dissolution rates were compared for the 16 NOM isolates, kobs was positively correlated with certain properties of NOM, including specific ultraviolet absorbance (SUVA), aromatic and carbonyl carbon contents, and molecular weight. Dissolution rate constants were negatively correlated to hydrogen/carbon ratio and aliphatic carbon content. The observed correlations indicate that aromatic carbon content is a key factor in determining the rate of NOM-promoted dissolution of ZnO NPs. NOM isolates with higher SUVA were also more effective at enhancing the colloidal stability of the NPs; however, the NOM-promoted dissolution was likely due to enhanced interactions between surface metal ions and NOM rather than smaller aggregate size.
Based on the above results, we designed experiments to quantitatively link the dissolution kinetics and bioavailability of CuO NPs to Gulf killifish embryos under the influence of NOM. The CuO NPs dissolved to varying degrees and at different rates in diluted 5‰ artificial seawater buffered to different pH (6.3-7.5), with or without selected NOM isolates at various concentrations (0.1-10 mg-C L-1). NOM isolates with higher SUVA and aromatic carbon content (such as SRHA) were more effective at promoting the dissolution of CuO NPs, as with ZnO NPs, especially at higher NOM concentrations. On the other hand, the presence of NOM decreased the bioavailability of dissolved Cu ions, with the uptake rate constant negatively correlated to dissolved organic carbon concentration ([DOC]) multiplied by SUVA, a combined parameter indicative of aromatic carbon concentration in the media. When the embryos were exposed to CuO NP suspension, changes in their Cu content were due to the uptake of both dissolved Cu ions and nanoparticulate CuO. The uptake rate constant of nanoparticulate CuO was also negatively correlated to [DOC]×SUVA, in a fashion roughly proportional to changes in dissolved Cu uptake rate constant. Thus, the ratio of uptake rate constants from dissolved Cu and nanoparticulate CuO (ranging from 12 to 22, on average 17±4) were insensitive to NOM type or concentration. Instead, the relative contributions of these two Cu forms were largely determined by the percentage of CuO NP that was dissolved.
Overall, this dissertation elucidated the important role that dissolved NOM plays in affecting the environmental fate and bioavailability of soluble metal-based nanomaterials. This dissertation work identified aromatic carbon content and its indicator SUVA as key NOM properties that influence the dissolution, aggregation and biouptake kinetics of metal oxide NPs and highlighted dissolution rate as a useful functional assay for assessing the relative contributions of dissolved and nanoparticulate forms to metal bioavailability. Findings of this dissertation work will be helpful for predicting the environmental risks of engineered nanomaterials.
Resumo:
In this study we investigated the relations between community calcification of an entire coral reef in the northern Red Sea and annual changes in temperature, aragonite saturation and nutrient loading over a two year period. Summer (April-October) and winter (November-March) average calcification rates varied between 60 ± 20 and 30 ± 20 mmol·m-2·d-1, respectively. In general, calcification increased with temperature and aragonite saturation state of reef water with an apparent effect of nutrients, which is in agreement with most laboratory studies and in situ measurements of single coral growth rates. The calcification rates we measured in the reef correlated remarkably well with precipitation rates of inorganic aragonite calculated for the same temperature and degree of saturation ranges using empirical equations from the literature. This is a very significant finding considering that only a minute portion of reef calcification is inorganic. Hence, these relations could be used to predict the response of coral reefs to ocean acidification and warming.
Resumo:
Ocean acidification (OA) is expected to reduce the net ecosystem calcification (NEC) rates and overall accretion of coral reef ecosystems. However, despite the fact that sediments are the most abundant form of calcium carbonate (CaCO3) in coral reef ecosystems and their dissolution may be more sensitive to OA than biogenic calcification, the impacts of OA induced sediment dissolution on coral reef NEC rates and CaCO3 accretion are poorly constrained. Carbon dioxide addition and light attenuation experiments were performed at Heron Island, Australia in an attempt to tease apart the influence of OA and organic metabolism (e.g. respiratory CO2 production) on CaCO3 dissolution. Overall, CaCO3 dissolution rates were an order of magnitude more sensitive to elevated CO2 and decreasing seawater aragonite saturation state (Omega Ar; 300-420% increase in dissolution per unit decrease in Omega Ar) than published reductions in biologically mediated calcification due to OA. Light attenuation experiments led to a 70% reduction in net primary production (NPP), which subsequently induced an increase in daytime (115%) and net diel (375%) CaCO3 dissolution rates. High CO2 and low light acted in synergy to drive a 575% increase in net diel dissolution rates. Importantly, disruptions to the balance of photosynthesis and respiration (P/R) had a significant effect on daytime CaCO3 dissolution, while average water column ?Ar was the main driver of nighttime dissolution rates. A simple model of platform-integrated dissolution rates was developed demonstrating that seasonal changes in photosynthetically active radiation (PAR) can have an important effect on platform integrated CaCO3 sediment dissolution rates. The considerable response of CaCO3 sediment dissolution to elevated CO2 means that much of the response of coral reef communities and ecosystems to OA could be due to increases in CaCO3 sediment and framework dissolution, and not decreases in biogenic calcification.
Resumo:
Abstract - This study investigates the effect of solid dispersions prepared from of polyethylene glycol (PEG) 3350 and 6000 Da alone or combined with the non-ionic surfactant Tween 80 on the solubility and dissolution rate of a poorly soluble drug eprosartan mesylate (ESM) in attempt to improve its bioavailability following its oral administration.
INTRODUCTION
ESM is a potent anti-hypertension [1]. It has low water solubility and is classified as a Class II drug as per the Biopharmaceutical Classification Systems (BCS) leading to low and variable oral bioavailability (approximately 13%). [2]. Thus, improving ESM solubility and/or dissolution rate would eventually improve the drug bioavailability. Solid dispersion is widely used technique to improve the water solubility of poorly water-soluble drugs employing various biocompatible polymers. In this study, we aimed to enhance the solubility and dissolution of EMS employing solid dispersion (SD) formulated from two grades of poly ethylene glycol (PEG) polymers (i.e. PEG 3350 & PEG 6000 Da) either individually or in combination with Tween 80.
MATERIALS AND METHODS
ESM SDs were prepared by solvent evaporation method using either PEG 3350 or PEG 6000 at various (drug: polymer, w/w) ratios 1:1, 1:2, 1:3, 1:4, 1:5 alone or combined with Tween 80 added at fixed percentage of 0.1 of drug by weight?. Physical mixtures (PMs) of drug and carriers were also prepared at same ratios. Drug solid dispersions and physical mixtures were characterized in terms of drug content, drug dissolution using dissolution apparatus USP II and assayed using HPLC method. Drug dissolution enhancement ratio (ER %) from SD in comparison to the plain drug was calculated. Drug-polymer interactions were evaluated using Differential Scanning Calorimetry (DSC) and FT-IR.
RESULTS AND DISCUSSION
The in vitro solubility and dissolution studies showed SDs prepared using both polymers produced a remarkable improvement (p<0.05) in comparison to the plain drug which reached around 32% (Fig. 1). The dissolution enhancement ratio was polymer type and concentration-dependent. Adding Tween 80 to the SD did not show further dissolution enhancement but reduced the required amount of the polymer to get the same dissolution enhancement. The DSC and FT-IR studies indicated that using SD resulted in transformation of drug from crystalline to amorphous form.
CONCLUSIONS
This study indicated that SDs prepared by using both polymers i.e. PEG 3350 and PEG 6000 improved the in-vitro solubility and dissolution of ESM remarkably which may result in improving the drug bioavailability in vivo.
Acknowledgments
This work is a part of MSc thesis of O.M. Ali at the Faculty of Pharmacy, Aleppo University, Syria.
REFERENCES
[1] Ruilope L, Jager B: Eprosartan for the treatment of hypertension. Expert Opin Pharmacother 2003; 4(1):107-14
[2] Tenero D, Martin D, Wilson B, Jushchyshyn J, Boike S, Lundberg, D, et al. Pharmacokinetics of intravenously and orally administered Eprosartan in healthy males: absolute bioavailability and effect of food. Biopharm Drug Dispos 1998; 19(6): 351- 6.
Resumo:
Improving the performance of a incident detection system was essential to minimize the effect of incidents. A new method of incident detection was brought forward in this paper based on an in-car terminal which consisted of GPS module, GSM module and control module as well as some optional parts such as airbag sensors, mobile phone positioning system (MPPS) module, etc. When a driver or vehicle discovered the freeway incident and initiated an alarm report the incident location information located by GPS, MPPS or both would be automatically send to a transport management center (TMC), then the TMC would confirm the accident with a closed-circuit television (CCTV) or other approaches. In this method, detection rate (DR), time to detect (TTD) and false alarm rate (FAR) were more important performance targets. Finally, some feasible means such as management mode, education mode and suitable accident confirming approaches had been put forward to improve these targets.
Resumo:
The aim of this study is to prepare Ca, P and Si-containing ternary oxide nagelschmidtite (NAGEL, Ca7Si2P2O16) bioceramics and explore their in vitro bioactivity for potential bone tissue regeneration. We prepared dense NAGEL ceramics through high-temperature sintering of NAGEL ceramic powders. The apatite-mineralization ability, dissolution rate, and human osteoblast response (including cytotoxicity analysis, attachment, morphology, proliferation, and bone-related gene expression) to NAGEL ceramics have been systematically studied by comparing with conventional β-tricalcium phosphate (β-TCP) ceramics. The results showed that NAGEL ceramics possessed more obvious apatite mineralization and dissolution (degradation) and stimulated bone-related gene expression (OCN and OPN) of osteoblasts than β-TCP ceramics. NAGEL ceramics also showed no significant cytotoxicity. NAGEL ceramics supported osteoblast attachment, proliferation, and osteogenic gene expression, with a comparable cell proliferation activity with β-TCP ceramics. These results indicate that novel NAGEL bioceramics with the specific composition of Ca7Si2P2O16, are a promising biomaterial for bone tissue regeneration application.
Resumo:
This investigation used a combination of techniques, such as X-ray diffraction, inductively coupled plasma optical emission spectroscopy and infrared spectroscopy, to determine the dissolution mechanisms of the Bayer precipitate and the associated rate of dissolution in acetic, citric and oxalic acid environments. The Bayer precipitate is a mixture of hydrotalcite, calcium carbonate and sodium chloride that forms during the seawater neutralisation of Bayer liquors (waste residue of the alumina industry). The dissolution rate of a Bayer precipitate is found to be dependent on (1) the strength of the organic acid and (2) the number of donating H+ ions. The dissolution mechanism for a Bayer precipitate consists of several steps involving: (1) the dissolution of CaCO3, (2) formation of whewellite (calcium oxalate) when oxalic acid is used and (3) multiple dissolution steps for hydrotalcite that are highly dependent on the pH of solution. The decomposition of the Al–OH hydrotalcite layers resulted in the immediate formation of Al(OH)3, which is stable until the pH decreases below 5.5. This investigation has found that the Bayer precipitate is stable across a wide pH range in the presence of common organic acids found in the rhizosphere, and that initial decomposition steps are likely to be beneficial in supporting plant growth through the release of nutrients such as Ca2þ and Mg2þ.
Resumo:
This paper demonstrates the procedures for probabilistic assessment of a pesticide fate and transport model, PCPF-1, to elucidate the modeling uncertainty using the Monte Carlo technique. Sensitivity analyses are performed to investigate the influence of herbicide characteristics and related soil properties on model outputs using four popular rice herbicides: mefenacet, pretilachlor, bensulfuron-methyl and imazosulfuron. Uncertainty quantification showed that the simulated concentrations in paddy water varied more than those of paddy soil. This tendency decreased as the simulation proceeded to a later period but remained important for herbicides having either high solubility or a high 1st-order dissolution rate. The sensitivity analysis indicated that PCPF-1 parameters requiring careful determination are primarily those involve with herbicide adsorption (the organic carbon content, the bulk density and the volumetric saturated water content), secondary parameters related with herbicide mass distribution between paddy water and soil (1st-order desorption and dissolution rates) and lastly, those involving herbicide degradations. © Pesticide Science Society of Japan.
Resumo:
Nowadays growing number of new active pharmaceutical ingredients (API) have large molecular weight and are hydrophobic. The energy of their crystal lattice is bigger and polarity has decreased. This leads to weakened solubility and dissolution rate of the drug. These properties can be enhanced for example by amorphization. Amorphous form has the best dissolution rate in the solid state. In the amorphous form drug molecules are randomly arranged, so the energy required to dissolve molecules is lower compared to the crystalline counterpart. The disadvantage of amorphous form is that it is unstable. Amorphous form tends to crystallize. Stability of amorphous form can be enhanced by adding an adjuvant to drug product. Adjuvant is usually a polymer. Polymers prevent crystallization both by forming bonds with API molecules and by steric hindrance. The key thing in stabilizing amorphous form is good miscibility between API and polymer. They have to be mixed in a molecular level so that the polymer is able to prevent crystallization. The aim of this work was to study miscibility of drug and polymer and stability of their dispersion with different analytical methods. Amorphous dispersions were made by rotary evaporator and freeze dryer. Amorphicity was confirmed with X-ray powder diffraction (XRPD) right after preparation. Itraconazole and theophylline were the chosen molecules to be stabilized. Itraconazole was expected to be easier and theophylline more difficult to stabilize. Itraconazole was stabilized with HPMC and theophylline was stabilized with PVP. Miscibility was studied with XRPD and differential scanning calorimetry (DSC). In addition it was studied with polarized light microscope if miscibility was possible to see visually. Dispersions were kept in stressed conditions and the crystallization was analyzed with XRPD. Stability was also examined with isothermal microcalorimetry (IMC). The dispersion of itraconazole and theophylline 40/60 (w/w) was completely miscible. It was proved by linear combination of XRPD results and single glass transition temperature in DSC. Homogenic well mixed film was observed with light microscope. Phase separation was observed with other compositions. Dispersions of theophylline and PVP mixed only partly. Stability of itraconazole dispersions were better than theophylline dispersions which were mixed poorer. So miscibility was important thing considering stability. The results from isothermal microcalorimetry were similar to results from conventional stability studies. Complementary analytical methods should be used when studying miscibility so that the results are more reliable. Light microscope is one method in addition to mostly used XRPD and DSC. Analyzing light microscope photos is quite subjective but it gives an idea of miscibility. Isothermal microcalorimetry can be one option for conventional stability studies. If right conditions can be made where the crystallization is not too fast, it may be possible to predict stability with isothermal microcalorimetry.
Resumo:
The growth and dissolution dynamics of nonequilibrium crystal size distributions (CSDs) can be determined by solving the governing population balance equations (PBEs) representing reversible addition or dissociation. New PBEs are considered that intrinsically incorporate growth dispersion and yield complete CSDs. We present two approaches to solving the PBEs, a moment method and a numerical scheme. The results of the numerical scheme agree with the moment technique, which can be solved exactly when powers on mass-dependent growth and dissolution rate coefficients are either zero or one. The numerical scheme is more general and can be applied when the powers of the rate coefficients are non-integers or greater than unity. The influence of the size dependent rates on the time variation of the CSDs indicates that as equilibrium is approached, the CSDs become narrow when the exponent on the growth rate is less than the exponent on the dissolution rate. If the exponent on the growth rate is greater than the exponent on the dissolution rate, then the polydispersity continues to broaden. The computation method applies for crystals large enough that interfacial stability issues, such as ripening, can be neglected. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Biphasic calcium phosphates have received considerable attention due to their optimum dissolution rate in the human body after implantation. These materials are composed of hydroxyapatite (HA) and resorbable tricalcium phosphate (TCP). In the present investigation, HA whiskers are reinforced into TCP to enhance the mechanical properties of this biphasic composite. Various amounts (30-50 wt%) HA whiskers are reinforced in TCP matrix. Microstructural characterization has been carried out using field-emission scanning electron microscope. Mechanical properties have been investigated by microindentation in a universal testing machine (UTM). As TCP is resorbable, it will dissolve in body fluid and there is a strong possibility for the faceted HA whiskers to interact with functional groups present in the body fluid surroundings.
Resumo:
A comparative investigation of hot dip Zn-25Al alloy, Zn-55Al-Si and Zn coatings on steel was performed with attention to their corrosion performance in seawater. The results of 2-year exposure testing of these at Zhoushan test site are reported here. In tidal and immersion environments, Zn-25Al alloy coating is several times more durable than zinc coating of double thickness. At long exposure times, corrosion rate for the Zn-25Al alloy coating remains indistinguishable from that for the Zn-55Al-Si coating of similar thickness in tidal zone, and is two to three times lower than the latter in immersion zone. The decrease in tensile strength suggested that galvanized and Zn-55Al-Si coated steel suffer intense pitting corrosion in immersion zone. The electrochemical tests showed that all these coatings provide cathodic protection to the substrate metal; the galvanic potentials are equal to - 1,050, - 1,025 and - 880 mV (SCE) for zinc, Zn-25Al alloy and Zn-55Al-Si coating, respectively, which are adequate to keep the steel inside the immunity region. It is believed that the superior performance of the Zn-25Al alloy coating is due to its optimal combination of the uniform corrosion resistance and pitting corrosion resistance. The inferior corrosion performance by comparison of the Zn coating mainly results from its larger dissolution rate, while the failure of the Zn-55Al-Si coating is probably related to its higher susceptibility to pitting corrosion in seawater.
Resumo:
Abstract The karsrt erosion engineering geology became a highlight problem in recent years, in particularly, the karst erosion of marlite of Badong formation made the rock mechanics weaken in Three Gorges Reservoir area, which reduces the safety of slope. During the immigrant construction, many high slopes have been formed, whose instabilities problems pose serious threats to the safety of the people and properties. The accidents of the slope failure take place now and then. By testing, it has been found that the karst erosion pattern and dissolution rate of marlite are not weaker than that of the pure limestone. Furthermore, owning to the weathering and unloading, the karst erosion of the marlite will reach certain depth of the slope, which is named infiltrated karst erosion. The karst erosion made the rock mass quality of slope or foundation worse in a large scale. The karst erosion geological disasters, taken place or not, has become the main restrictive factors to the social stability and economic development. Thus the karst erosion process and mechanism of marlite of Badong formation are studied as the main content of this dissertation. The weakening characteristic of rock mass mechanics parameters are studied along with the rock mass structure deformation and failure processes in the course of the karst erosion. At first, the conditions and influencing factors of the karst erosion are analyzed in the investigative region, on the basis of different karst erosion phenomenon of the marlite and different failure modes of slope. Then via indoor the karst erosion tests, it is analyzed that the karst erosion will change the rock mass composition and its structure. Through test, the different karst erosion phenomena between micro and macro have been observed, and the karst erosion mechanism of the marlite has been summarized. Damage theory is introduced to explain the feature of dissolution pore and the law of crack propagation in the marlite. By microscope and the references data, it can be concluded that the karst erosion process can be divided into rock minerals damage and rock structural damage. And the percent of karst erosion volume is named damage factor, which can be used to describe the quantify karst erosion degree of marlite. Through test, the rock mechanical properties in the different period of karst erosion are studied. Based on the damage mechanics theory and the test result, the relation between the karst erosion degree of marlite and weakening degree of mechanical properties is summarized. By numerical simulations, the karst erosive rock mass mechanics is verified. The conclusion is drawn as below: to the rock mass of marlite, the karst erosion damage made mechanics parameters variation, the deformation modulus, cohesion, and inter friction angle reduce as the negative exponent with the increasing of the karst erosion volume, however, the Poisson ratio increases as the positive exponent with the karst erosion volume increasing. It should be noticed that the deduced formulations are limited to the test data and certain conditions. It is suitable to the rock mass parametric weakening process after the karst erosion of marlite in Three Gorges Reservoir area. Based on the failure types of marlite slope in the field, the karst erosion and weathering process of rock mass are analyzed. And the evolution law of deformation and failure of the marlite mass is studied. The main failure feature of the marlite slope is the karst erosive structure subsidence mode in Three Gorges Reservoir area. The karst erosive structure subsidence mode is explained as follows: the rock mass undergoes the synthetic influence, such as weathering, unloading, corrosion, and so on, many pores and cavities have been formed in the rock mass interior, the rock mass quality is worsen and the rock mass structure is changed, and then the inherent structure of rock mass is collapsed under its gravity, therefore, the failure mode of compaction and subsidence take place. Finally, two examples are used to verify the rock mass parameters in Three Gorges Reservoir area, and the relationship between the marlite slope stability and the time of karst erosion is proposed.