977 resultados para Disease mapping
Resumo:
Background: There are inequalities in geographical access and delivery of health care services in Australia, particularly for cardiovascular disease (CVD), Australia's major cause of death. Analyses and models that can inform and positively influence strategies to augment services and preventative measures are needed. The Cardiac-ARIA project is using geographical spatial technology (GIS) to develop a national index for each of Australia's 13,000 population centres. The index will describe the spatial distribution of CVD health care services available to support populations at risk, in a timely manner, after a major cardiac event. Methods: In the initial phase of the project, an expert panel of cardiologists and an emergency physician have identified key elements of national and international guidelines for management of acute coronary syndromes, cardiac arrest, life-threatening arrhythmias and acute heart failure, from the time of onset (potentially dial 000) to return from the hospital to the community (cardiac rehabilitation). Results: A systematic search has been undertaken to identify the geographical location of, and type of, cardiac services currently available. This has enabled derivation of a master dataset of necessary services, e.g. telephone networks, ambulance, RFDS, helicopter retrieval services, road networks, hospitals, general practitioners, medical community centres, pathology services, CCUs, catheterisation laboratories, cardio-thoracic surgery units and cardiac rehabilitation services. Conclusion: This unique and innovative project has the potential to deliver a powerful tool to both highlight and combat the burden of disease of CVD in urban and regional Australia.
Resumo:
Background Barmah Forest virus (BFV) disease is a common and wide-spread mosquito-borne disease in Australia. This study investigated the spatio-temporal patterns of BFV disease in Queensland, Australia using geographical information system (GIS) tools and geostatistical analysis. Methods/Principal Findings We calculated the incidence rates and standardised incidence rates of BFV disease. Moran's I statistic was used to assess the spatial autocorrelation of BFV incidences. Spatial dynamics of BFV disease was examined using semi-variogram analysis. Interpolation techniques were applied to visualise and display the spatial distribution of BFV disease in statistical local areas (SLAs) throughout Queensland. Mapping of BFV disease by SLAs reveals the presence of substantial spatio-temporal variation over time. Statistically significant differences in BFV incidence rates were identified among age groups (χ2 = 7587, df = 7327,p<0.01). There was a significant positive spatial autocorrelation of BFV incidence for all four periods, with the Moran's I statistic ranging from 0.1506 to 0.2901 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. Conclusions/Significance This is the first study to examine spatial and temporal variation in the incidence rates of BFV disease across Queensland using GIS and geostatistics. The BFV transmission varied with age and gender, which may be due to exposure rates or behavioural risk factors. There are differences in the spatio-temporal patterns of BFV disease which may be related to local socio-ecological and environmental factors. These research findings may have implications in the BFV disease control and prevention programs in Queensland.
Resumo:
Barmah Forest virus (BFV) disease is one of the most widespread mosquito-borne diseases in Australia. The number of outbreaks and the incidence rate of BFV in Australia have attracted growing concerns about the spatio-temporal complexity and underlying risk factors of BFV disease. A large number of notifications has been recorded continuously in Queensland since 1992. Yet, little is known about the spatial and temporal characteristics of the disease. I aim to use notification data to better understand the effects of climatic, demographic, socio-economic and ecological risk factors on the spatial epidemiology of BFV disease transmission, develop predictive risk models and forecast future disease risks under climate change scenarios. Computerised data files of daily notifications of BFV disease and climatic variables in Queensland during 1992-2008 were obtained from Queensland Health and Australian Bureau of Meteorology, respectively. Projections on climate data for years 2025, 2050 and 2100 were obtained from Council of Scientific Industrial Research Organisation. Data on socio-economic, demographic and ecological factors were also obtained from relevant government departments as follows: 1) socio-economic and demographic data from Australian Bureau of Statistics; 2) wetlands data from Department of Environment and Resource Management and 3) tidal readings from Queensland Department of Transport and Main roads. Disease notifications were geocoded and spatial and temporal patterns of disease were investigated using geostatistics. Visualisation of BFV disease incidence rates through mapping reveals the presence of substantial spatio-temporal variation at statistical local areas (SLA) over time. Results reveal high incidence rates of BFV disease along coastal areas compared to the whole area of Queensland. A Mantel-Haenszel Chi-square analysis for trend reveals a statistically significant relationship between BFV disease incidence rates and age groups (ƒÓ2 = 7587, p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. A cluster analysis was used to detect the hot spots/clusters of BFV disease at a SLA level. Most likely spatial and space-time clusters are detected at the same locations across coastal Queensland (p<0.05). The study demonstrates heterogeneity of disease risk at a SLA level and reveals the spatial and temporal clustering of BFV disease in Queensland. Discriminant analysis was employed to establish a link between wetland classes, climate zones and BFV disease. This is because the importance of wetlands in the transmission of BFV disease remains unclear. The multivariable discriminant modelling analyses demonstrate that wetland types of saline 1, riverine and saline tidal influence were the most significant risk factors for BFV disease in all climate and buffer zones, while lacustrine, palustrine, estuarine and saline 2 and saline 3 wetlands were less important. The model accuracies were 76%, 98% and 100% for BFV risk in subtropical, tropical and temperate climate zones, respectively. This study demonstrates that BFV disease risk varied with wetland class and climate zone. The study suggests that wetlands may act as potential breeding habitats for BFV vectors. Multivariable spatial regression models were applied to assess the impact of spatial climatic, socio-economic and tidal factors on the BFV disease in Queensland. Spatial regression models were developed to account for spatial effects. Spatial regression models generated superior estimates over a traditional regression model. In the spatial regression models, BFV disease incidence shows an inverse relationship with minimum temperature, low tide and distance to coast, and positive relationship with rainfall in coastal areas whereas in whole Queensland the disease shows an inverse relationship with minimum temperature and high tide and positive relationship with rainfall. This study determines the most significant spatial risk factors for BFV disease across Queensland. Empirical models were developed to forecast the future risk of BFV disease outbreaks in coastal Queensland using existing climatic, socio-economic and tidal conditions under climate change scenarios. Logistic regression models were developed using BFV disease outbreak data for the existing period (2000-2008). The most parsimonious model had high sensitivity, specificity and accuracy and this model was used to estimate and forecast BFV disease outbreaks for years 2025, 2050 and 2100 under climate change scenarios for Australia. Important contributions arising from this research are that: (i) it is innovative to identify high-risk coastal areas by creating buffers based on grid-centroid and the use of fine-grained spatial units, i.e., mesh blocks; (ii) a spatial regression method was used to account for spatial dependence and heterogeneity of data in the study area; (iii) it determined a range of potential spatial risk factors for BFV disease; and (iv) it predicted the future risk of BFV disease outbreaks under climate change scenarios in Queensland, Australia. In conclusion, the thesis demonstrates that the distribution of BFV disease exhibits a distinct spatial and temporal variation. Such variation is influenced by a range of spatial risk factors including climatic, demographic, socio-economic, ecological and tidal variables. The thesis demonstrates that spatial regression method can be applied to better understand the transmission dynamics of BFV disease and its risk factors. The research findings show that disease notification data can be integrated with multi-factorial risk factor data to develop build-up models and forecast future potential disease risks under climate change scenarios. This thesis may have implications in BFV disease control and prevention programs in Queensland.
Resumo:
Associations between single nucleotide polymorphisms (SNPs) at 5p15 and multiple cancer types have been reported. We have previously shown evidence for a strong association between prostate cancer (PrCa) risk and rs2242652 at 5p15, intronic in the telomerase reverse transcriptase (TERT) gene that encodes TERT. To comprehensively evaluate the association between genetic variation across this region and PrCa, we performed a fine-mapping analysis by genotyping 134 SNPs using a custom Illumina iSelect array or Sequenom MassArray iPlex, followed by imputation of 1094 SNPs in 22 301 PrCa cases and 22 320 controls in The PRACTICAL consortium. Multiple stepwise logistic regression analysis identified four signals in the promoter or intronic regions of TERT that independently associated with PrCa risk. Gene expression analysis of normal prostate tissue showed evidence that SNPs within one of these regions also associated with TERT expression, providing a potential mechanism for predisposition to disease.
Resumo:
A novel multiple regression method (RM) is developed to predict identity-by-descent probabilities at a locus L (IBDL), among individuals without pedigree, given information on surrounding markers and population history. These IBDL probabilities are a function of the increase in linkage disequilibrium (LD) generated by drift in a homogeneous population over generations. Three parameters are sufficient to describe population history: effective population size (Ne), number of generations since foundation (T), and marker allele frequencies among founders (p). IBD L are used in a simulation study to map a quantitative trait locus (QTL) via variance component estimation. RM is compared to a coalescent method (CM) in terms of power and robustness of QTL detection. Differences between RM and CM are small but significant. For example, RM is more powerful than CM in dioecious populations, but not in monoecious populations. Moreover, RM is more robust than CM when marker phases are unknown or when there is complete LD among founders or Ne is wrong, and less robust when p is wrong. CM utilises all marker haplotype information, whereas RM utilises information contained in each individual marker and all possible marker pairs but not in higher order interactions. RM consists of a family of models encompassing four different population structures, and two ways of using marker information, which contrasts with the single model that must cater for all possible evolutionary scenarios in CM.
Resumo:
A whole-genome scan was conducted to map quantitative trait loci (QTL) for BSE resistance or susceptibility. Cows from four half-sib families were included and 173 microsatellite markers were used to construct a 2835-cM (Kosambi) linkage map covering 29 autosomes and the pseudoautosomal region of the sex chromosome. Interval mapping by linear regression was applied and extended to a multiple-QTL analysis approach that used identified QTL on other chromosomes as cofactors to increase mapping power. In the multiple-QTL analysis, two genome-wide significant QTL (BTA17 and X/Y ps) and four genome-wide suggestive QTL (BTA1, 6, 13, and 19) were revealed. The QTL identified here using linkage analysis do not overlap with regions previously identified using TDT analysis. One factor that may explain the disparity between the results is that a more extensive data set was used in the present study. Furthermore, methodological differences between TDT and linkage analyses may affect the power of these approaches.
Resumo:
Multiple sclerosis (MS) is a common chronic inflammatory disease of the central nervous system. Susceptibility to the disease is affected by both environmental and genetic factors. Genetic factors include haplotypes in the histocompatibility complex (MHC) and over 50 non-MHC loci reported by genome-wide association studies. Amongst these, we previously reported polymorphisms in chromosome 12q13-14 with a protective effect in individuals of European descent. This locus spans 288 kb and contains 17 genes, including several candidate genes which have potentially significant pathogenic and therapeutic implications. In this study, we aimed to fine-map this locus. We have implemented a two-phase study: a variant discovery phase where we have used next-generation sequencing and two target-enrichment strategies [long-range polymerase chain reaction (PCR) and Nimblegen's solution phase hybridization capture] in pools of 25 samples; and a genotyping phase where we genotyped 712 variants in 3577 healthy controls and 3269 MS patients. This study confirmed the association (rs2069502, P = 9.9 × 10−11, OR = 0.787) and narrowed down the locus of association to an 86.5 kb region. Although the study was unable to pinpoint the key-associated variant, we have identified a 42 (genotyped and imputed) single-nucleotide polymorphism haplotype block likely to harbour the causal variant. No evidence of association at previously reported low-frequency variants in CYP27B1 was observed. As part of the study we compared variant discovery performance using two target-enrichment strategies. We concluded that our pools enriched with Nimblegen's solution phase hybridization capture had better sensitivity to detect true variants than the pools enriched with long-range PCR, whilst specificity was better in the long-range PCR-enriched pools compared with solution phase hybridization capture enriched pools; this result has important implications for the design of future fine-mapping studies.
Resumo:
To understand the underlying genetic architecture of cardiovascular disease (CVD) risk traits, we undertook a genome-wide linkage scan to identify CVD quantitative trait loci (QTLs) in 377 individuals from the Norfolk Island population. The central aim of this research focused on the utilization of a genetically and geographically isolated population of individuals from Norfolk Island for the purposes of variance component linkage analysis to identify QTLs involved in CVD risk traits. Substantial evidence supports the involvement of traits such as systolic and diastolic blood pressures, high-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol, body mass index and triglycerides as important risk factors for CVD pathogenesis. In addition to the environmental inXuences of poor diet, reduced physical activity, increasing age, cigarette smoking and alcohol consumption, many studies have illustrated a strong involvement of genetic components in the CVD phenotype through family and twin studies. We undertook a genome scan using 400 markers spaced approximately 10 cM in 600 individuals from Norfolk Island. Genotype data was analyzed using the variance components methods of SOLAR. Our results gave a peak LOD score of 2.01 localizing to chromosome 1p36 for systolic blood pressure and replicated previously implicated loci for other CVD relevant QTLs.
Resumo:
Objectives Only 193 people from Pitcairn Island, all descended from 9 ‘Bounty’ mutineers and 12 Tahitian women, moved to the uninhabited Norfolk Island in 1856. Our objective was to assess the population of Norfolk Island, several thousand km off the eastern coast of Australia, as a genetic isolate of potential use for cardiovascular disease (CVD) gene mapping. Methods A total of 602 participants, approximately two thirds of the island’s present adult population, were characterized for a panel of CVD risk factors. Statistical power and heritability were calculated. Results Norfolk Islander’s possess an increased prevalence of hypertension, obesity and multiple CVD risk factors when compared to outbred Caucasian populations. 64% of the study participants were descendents of the island’s original founder population. Triglycerides, cholesterol, and blood pressures all had heritabilities above 0.2. Conclusions The Norfolk land population is a potentially useful genetic isolate for gene mapping studies aimed at identifying CVD risk factor quantitative trait loci (QTL).
Resumo:
Linkage disequilibrium (LD) mapping is commonly used as a fine mapping tool in human genome mapping and has been used with some success for initial disease gene isolation in certain isolated in-bred human populations. An understanding of the population history of domestic dog breeds suggests that LD mapping could be routinely utilized in this species for initial genome-wide scans. Such an approach offers significant advantages over traditional linkage analysis. Here, we demonstrate, using canine copper toxicosis in the Bedlington terrier as the model, that LD mapping could be reasonably expected to be a useful strategy in low-resolution, genome-wide scans in pure-bred dogs. Significant LD was demonstrated over distances up to 33.3 cM. It is very unlikely, for a number of reasons discussed, that this result could be extrapolated to the rest of the genome. It is, however, consistent with the expectation given the population structure of canine breeds and, in this breed at least, with the hypothesis that it may be possible to utilize LD in a genome-wide scan. In this study, LD mapping confirmed the location of the copper toxicosis in Bedlington terrier gene (CT-BT) and was able to do so in a population that was refractory to traditional linkage analysis.
Resumo:
The gene for renin, previously mapped to human chromosome 1, was further localized to 1q12 → qter using human-mouse somatic cell hybrid DNAs. The renin DNA probe used (λ HR5) could detect a HindIII restriction fragment length polymorphism. When used in studies of 12 informative families, no linkage could be found between the renin and Charcot-Marie-Tooth disease. Furthermore, an association of any renin allele with hypertension was not apparent.
Resumo:
Nine probes were isolated from a human chromosome 1 enriched library and mapped to regions of chromosome 1 using somatic cell hybrid lines. One clone, LR67, which mapped 1q12→q23 detected a BglI RFLP. This probe, as well as 4 other known chromosome 1 markers, α-spectrin, Factor XIIIB, DR10 and DR78, were used for linkage studies in 15 Charcot-Marie-Tooth disease (CMT1) families. Close linking of CMT1 to any of the 5 markers was not indicated. Total lod scores excluded linkage of CMT1 to LR67 and to DR10 at 5 cM or less, to DR78 and 10 cM or less, α-spectrin at 15 cM or less and Factor XIIIB at 20 cM or less. Possible linkage, however, was shown between LR67 and CMT1 at a distance of 30 cM. Also linkage at a distance of 5 cM was detected between this probe and α-spectrin.
Resumo:
Cardiovascular disease (CVD) affects millions of people worldwide and is influenced by numerous factors, including lifestyle and genetics. Expression quantitative trait loci (eQTLs) influence gene expression and are good candidates for CVD risk. Founder-effect pedigrees can provide additional power to map genes associated with disease risk. Therefore, we identified eQTLs in the genetic isolate of Norfolk Island (NI) and tested for associations between these and CVD risk factors. We measured genome-wide transcript levels of blood lymphocytes in 330 individuals and used pedigree-based heritability analysis to identify heritable transcripts. eQTLs were identified by genome-wide association testing of these transcripts. Testing for association between CVD risk factors (i.e., blood lipids, blood pressure, and body fat indices) and eQTLs revealed 1,712 heritable transcripts (p < 0.05) with heritability values ranging from 0.18 to 0.84. From these, we identified 200 cis-acting and 70 trans-acting eQTLs (p < 1.84 × 10(-7)) An eQTL-centric analysis of CVD risk traits revealed multiple associations, including 12 previously associated with CVD-related traits. Trait versus eQTL regression modeling identified four CVD risk candidates (NAAA, PAPSS1, NME1, and PRDX1), all of which have known biological roles in disease. In addition, we implicated several genes previously associated with CVD risk traits, including MTHFR and FN3KRP. We have successfully identified a panel of eQTLs in the NI pedigree and used this to implicate several genes in CVD risk. Future studies are required for further assessing the functional importance of these eQTLs and whether the findings here also relate to outbred populations.
Resumo:
Mapping of protein signaling networks within tumors can identify new targets for therapy and provide a means to stratify patients for individualized therapy. Despite advances in combination chemotherapy, the overall survival for childhood rhabdomyosarcoma remains ∼60%. A critical goal is to identify functionally important protein signaling defects associated with treatment failure for the 40% nonresponder cohort. Here, we show, by phosphoproteomic network analysis of microdissected tumor cells, that interlinked components of the Akt/mammalian target of rapamycin (mTOR) pathway exhibited increased levels of phosphorylation for tumors of patients with short-term survival. Specimens (n = 59) were obtained from the Children's Oncology Group Intergroup Rhabdomyosarcoma Study (IRS) IV, D9502 and D9803, with 12-year follow-up. High phosphorylation levels were associated with poor overall and poor disease-free survival: Akt Ser473 (overall survival P < 0.001, recurrence-free survival P < 0.0009), 4EBP1 Thr37/46 (overall survival P < 0.0110, recurrence-free survival P < 0.0106), eIF4G Ser1108 (overall survival P < 0.0017, recurrence-free survival P < 0.0072), and p70S6 Thr389 (overall survival P < 0.0085, recurrence-free survival P < 0.0296). Moreover, the findings support an altered interrelationship between the insulin receptor substrate (IRS-1) and Akt/mTOR pathway proteins (P < 0.0027) for tumors from patients with poor survival. The functional significance of this pathway was tested using CCI-779 in a mouse xenograft model. CCI-779 suppressed phosphorylation of mTOR downstream proteins and greatly reduced the growth of two different rhabdomyosarcoma (RD embryonal P = 0.00008; Rh30 alveolar P = 0.0002) cell lines compared with controls. These results suggest that phosphoprotein mapping of the Akt/mTOR pathway should be studied further as a means to select patients to receive mTOR/IRS pathway inhibitors before administration of chemotherapy.
Resumo:
S. japonicum infection is believed to be endemic in 28 of the 80 provinces of the Philippines and the most recent data on schistosomiasis prevalence have shown considerable variability between provinces. In order to increase the efficient allocation of parasitic disease control resources in the country, we aimed to describe the small scale spatial variation in S. japonicum prevalence across the Philippines, quantify the role of the physical environment in driving the spatial variation of S. japonicum, and develop a predictive risk map of S. japonicum infection. Data on S. japonicum infection from 35,754 individuals across the country were geo-located at the barangay level and included in the analysis. The analysis was then stratified geographically for Luzon, the Visayas and Mindanao. Zero-inflated binomial Bayesian geostatistical models of S. japonicum prevalence were developed and diagnostic uncertainty was incorporated. Results of the analysis show that in the three regions, males and individuals aged ≥ 20 years had significantly higher prevalence of S. japonicum compared with females and children <5 years. The role of the environmental variables differed between regions of the Philippines. S. japonicum infection was widespread in the Visayas whereas it was much more focal in Luzon and Mindanao. This analysis revealed significant spatial variation in prevalence of S. japonicum infection in the Philippines. This suggests that a spatially targeted approach to schistosomiasis interventions, including mass drug administration, is warranted. When financially possible, additional schistosomiasis surveys should be prioritized to areas identified to be at high risk, but which were underrepresented in our dataset.