911 resultados para Discrete-Time Optimal Control
Resumo:
This paper deals with the H(infinity) recursive estimation problem for general rectangular time-variant descriptor systems in discrete time. Riccati-equation based recursions for filtered and predicted estimates are developed based on a data fitting approach and game theory. In this approach, the nature determines a state sequence seeking to maximize the estimation cost, whereas the estimator tries to find an estimate that brings the estimation cost to a minimum. A solution exists for a specified gamma-level if the resulting cost is positive. In order to present some computational alternatives to the H(infinity) filters developed, they are rewritten in information form along with the respective array algorithms. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This technical note develops information filter and array algorithms for a linear minimum mean square error estimator of discrete-time Markovian jump linear systems. A numerical example for a two-mode Markovian jump linear system, to show the advantage of using array algorithms to filter this class of systems, is provided.
Resumo:
In this paper we obtain the linear minimum mean square estimator (LMMSE) for discrete-time linear systems subject to state and measurement multiplicative noises and Markov jumps on the parameters. It is assumed that the Markov chain is not available. By using geometric arguments we obtain a Kalman type filter conveniently implementable in a recurrence form. The stationary case is also studied and a proof for the convergence of the error covariance matrix of the LMMSE to a stationary value under the assumption of mean square stability of the system and ergodicity of the associated Markov chain is obtained. It is shown that there exists a unique positive semi-definite solution for the stationary Riccati-like filter equation and, moreover, this solution is the limit of the error covariance matrix of the LMMSE. The advantage of this scheme is that it is very easy to implement and all calculations can be performed offline. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this paper is to re-examine the risk-and effort attitude in the context of strategic dynamic interactions stated as a discrete-time finite-horizon Nash game. The analysis is based on the assumption that players are endogenously risk-and effort-averse. Each player is characterized by distinct risk-and effort-aversion types that are unknown to his opponent. The goal of the game is the optimal risk-and effort-sharing between the players. It generally depends on the individual strategies adopted and, implicitly, on the the players' types or characteristics.
Resumo:
The achievable region approach seeks solutions to stochastic optimisation problems by: (i) characterising the space of all possible performances(the achievable region) of the system of interest, and (ii) optimisingthe overall system-wide performance objective over this space. This isradically different from conventional formulations based on dynamicprogramming. The approach is explained with reference to a simpletwo-class queueing system. Powerful new methodologies due to the authorsand co-workers are deployed to analyse a general multiclass queueingsystem with parallel servers and then to develop an approach to optimalload distribution across a network of interconnected stations. Finally,the approach is used for the first time to analyse a class of intensitycontrol problems.
Resumo:
In recent years the analysis and synthesis of (mechanical) control systems in descriptor form has been established. This general description of dynamical systems is important for many applications in mechanics and mechatronics, in electrical and electronic engineering, and in chemical engineering as well. This contribution deals with linear mechanical descriptor systems and its control design with respect to a quadratic performance criterion. Here, the notion of properness plays an important role whether the standard Riccati approach can be applied as usual or not. Properness and non-properness distinguish between the cases if the descriptor system is exclusively governed by the control input or by its higher-order time-derivatives additionally. In the unusual case of non-proper systems a quite different problem of optimal control design has to be considered. Both cases will be solved completely.
Resumo:
We show that optimizing a quantum gate for an open quantum system requires the time evolution of only three states irrespective of the dimension of Hilbert space. This represents a significant reduction in computational resources compared to the complete basis of Liouville space that is commonly believed necessary for this task. The reduction is based on two observations: the target is not a general dynamical map but a unitary operation; and the time evolution of two properly chosen states is sufficient to distinguish any two unitaries. We illustrate gate optimization employing a reduced set of states for a controlled phasegate with trapped atoms as qubit carriers and a iSWAP gate with superconducting qubits.
Resumo:
Since no physical system can ever be completely isolated from its environment, the study of open quantum systems is pivotal to reliably and accurately control complex quantum systems. In practice, reliability of the control field needs to be confirmed via certification of the target evolution while accuracy requires the derivation of high-fidelity control schemes in the presence of decoherence. In the first part of this thesis an algebraic framework is presented that allows to determine the minimal requirements on the unique characterisation of arbitrary unitary gates in open quantum systems, independent on the particular physical implementation of the employed quantum device. To this end, a set of theorems is devised that can be used to assess whether a given set of input states on a quantum channel is sufficient to judge whether a desired unitary gate is realised. This allows to determine the minimal input for such a task, which proves to be, quite remarkably, independent of system size. These results allow to elucidate the fundamental limits regarding certification and tomography of open quantum systems. The combination of these insights with state-of-the-art Monte Carlo process certification techniques permits a significant improvement of the scaling when certifying arbitrary unitary gates. This improvement is not only restricted to quantum information devices where the basic information carrier is the qubit but it also extends to systems where the fundamental informational entities can be of arbitary dimensionality, the so-called qudits. The second part of this thesis concerns the impact of these findings from the point of view of Optimal Control Theory (OCT). OCT for quantum systems utilises concepts from engineering such as feedback and optimisation to engineer constructive and destructive interferences in order to steer a physical process in a desired direction. It turns out that the aforementioned mathematical findings allow to deduce novel optimisation functionals that significantly reduce not only the required memory for numerical control algorithms but also the total CPU time required to obtain a certain fidelity for the optimised process. The thesis concludes by discussing two problems of fundamental interest in quantum information processing from the point of view of optimal control - the preparation of pure states and the implementation of unitary gates in open quantum systems. For both cases specific physical examples are considered: for the former the vibrational cooling of molecules via optical pumping and for the latter a superconducting phase qudit implementation. In particular, it is illustrated how features of the environment can be exploited to reach the desired targets.
Resumo:
La tesis pretende explorar acercamientos computacionalmente confiables y eficientes de contractivo MPC para sistemas de tiempo discreto. Dos tipos de contractivo MPC han sido estudiados: MPC con coacción contractiva obligatoria y MPC con una secuencia contractiva de conjuntos controlables. Las técnicas basadas en optimización convexa y análisis de intervalos son aplicadas para tratar MPC contractivo lineal y no lineal, respectivamente. El análisis de intervalos clásicos es ampliado a zonotopes en la geometría para diseñar un conjunto invariante de control terminal para el modo dual de MPC. También es ampliado a intervalos modales para tener en cuenta la modalidad al calcula de conjuntos controlables robustos con una interpretación semántica clara. Los instrumentos de optimización convexa y análisis de intervalos han sido combinados para mejorar la eficacia de contractive MPC para varias clases de sistemas de tiempo discreto inciertos no lineales limitados. Finalmente, los dos tipos dirigidos de contractivo MPC han sido aplicados para controlar un Torneo de Fútbol de Copa Mundial de Micro Robot (MiroSot) y un Tanque-Reactor de Mezcla Continua (CSTR), respectivamente.
Resumo:
A neural network enhanced self-tuning controller is presented, which combines the attributes of neural network mapping with a generalised minimum variance self-tuning control (STC) strategy. In this way the controller can deal with nonlinear plants, which exhibit features such as uncertainties, nonminimum phase behaviour, coupling effects and may have unmodelled dynamics, and whose nonlinearities are assumed to be globally bounded. The unknown nonlinear plants to be controlled are approximated by an equivalent model composed of a simple linear submodel plus a nonlinear submodel. A generalised recursive least squares algorithm is used to identify the linear submodel and a layered neural network is used to detect the unknown nonlinear submodel in which the weights are updated based on the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model therefore the nonlinear submodel is naturally accommodated within the control law. Two simulation studies are provided to demonstrate the effectiveness of the control algorithm.
Resumo:
This paper considers PID control in terms of its implementation by means of an ARMA plant model. Two controller actions are considered, namely pole placement and deadbeat, both being applied via a PID structure for the adaptive real-time control of an industrial level system. As well as looking at two controller types separately, a comparison is made between the forms and it is shown how, under certain circumstances, the two forms can be seen to be identical. It is shown how the pole-placement PID form does not in fact realise an action which is equivalent to the deadbeat controller, when all closed-loop poles are chosen to be at the origin of the z-plane.
Resumo:
A technique is derived for solving a non-linear optimal control problem by iterating on a sequence of simplified problems in linear quadratic form. The technique is designed to achieve the correct solution of the original non-linear optimal control problem in spite of these simplifications. A mixed approach with a discrete performance index and continuous state variable system description is used as the basis of the design, and it is shown how the global problem can be decomposed into local sub-system problems and a co-ordinator within a hierarchical framework. An analysis of the optimality and convergence properties of the algorithm is presented and the effectiveness of the technique is demonstrated using a simulation example with a non-separable performance index.
Resumo:
This paper uses genetic algorithms to optimise the mathematical model of a beer fermentation process that operates in batch mode. The optimisation is based in adjusting the temperature profile of the mixture during a fixed period of time in order to reach the required ethanol levels but considering certain operational and quality restrictions.
Resumo:
The Routh-stability method is employed to reduce the order of discrete-time system transfer functions. It is shown that the Routh approximant is well suited to reduce both the denominator and the numerator polynomials, although alternative methods, such as PadÃ�Â(c)-Markov approximation, are also used to fit the model numerator coefficients.
Resumo:
The presence of mismatch between controller and system is considered. A novel discrete-time approach is used to investigate the migration of closed-loop poles when this mismatch occurs. Two forms of state estimator are employed giving rise to several interesting features regarding stability and performance.