953 resultados para Discrete Variable Representation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the method of quantum trajectories we show that a known pure state can be optimally monitored through time when subject to a sequence of discrete measurements. By modifying the way that we extract information from the measurement apparatus we can minimize the average algorithmic information of the measurement record, without changing the unconditional evolution of the measured system. We define an optimal measurement scheme as one which has the lowest average algorithmic information allowed. We also show how it is possible to extract information about system operator averages from the measurement records and their probabilities. The optimal measurement scheme, in the limit of weak coupling, determines the statistics of the variance of the measured variable directly. We discuss the relevance of such measurements for recent experiments in quantum optics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The step size determines the accuracy of a discrete element simulation. The position and velocity updating calculation uses a pre-calculated table and hence the control of step size can not use the integration formulas for step size control. A step size control scheme for use with the table driven velocity and position calculation uses the difference between the calculation result from one big step and that from two small steps. This variable time step size method chooses the suitable time step size for each particle at each step automatically according to the conditions. Simulation using fixed time step method is compared with that of using variable time step method. The difference in computation time for the same accuracy using a variable step size (compared to the fixed step) depends on the particular problem. For a simple test case the times are roughly similar. However, the variable step size gives the required accuracy on the first run. A fixed step size may require several runs to check the simulation accuracy or a conservative step size that results in longer run times. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of transient dynamical phenomena near bifurcation thresholds has attracted the interest of many researchers due to the relevance of bifurcations in different physical or biological systems. In the context of saddle-node bifurcations, where two or more fixed points collide annihilating each other, it is known that the dynamics can suffer the so-called delayed transition. This phenomenon emerges when the system spends a lot of time before reaching the remaining stable equilibrium, found after the bifurcation, because of the presence of a saddle-remnant in phase space. Some works have analytically tackled this phenomenon, especially in time-continuous dynamical systems, showing that the time delay, tau, scales according to an inverse square-root power law, tau similar to (mu-mu (c) )(-1/2), as the bifurcation parameter mu, is driven further away from its critical value, mu (c) . In this work, we first characterize analytically this scaling law using complex variable techniques for a family of one-dimensional maps, called the normal form for the saddle-node bifurcation. We then apply our general analytic results to a single-species ecological model with harvesting given by a unimodal map, characterizing the delayed transition and the scaling law arising due to the constant of harvesting. For both analyzed systems, we show that the numerical results are in perfect agreement with the analytical solutions we are providing. The procedure presented in this work can be used to characterize the scaling laws of one-dimensional discrete dynamical systems with saddle-node bifurcations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is on an onshore variable speed wind turbine with doubly fed induction generator and under supervisory control. The control architecture is equipped with an event-based supervisor for the supervision level and fuzzy proportional integral or discrete adaptive linear quadratic as proposed controllers for the execution level. The supervisory control assesses the operational state of the variable speed wind turbine and sends the state to the execution level. Controllers operation are in the full load region to extract energy at full power from the wind while ensuring safety conditions required to inject the energy into the electric grid. A comparison between the simulations of the proposed controllers with the inclusion of the supervisory control on the variable speed wind turbine benchmark model is presented to assess advantages of these controls. (C) 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper suggests that a convenient score test against non-nested alternatives can be constructed from the linear combination of the likelihood functions of the competing models. It is shown that this procedure is essentially a test for the correct specification of the conditional distribution of the variable of interest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper is twofold: firstly, to carry out a theoreticalreview of the most recent stated preference techniques used foreliciting consumers preferences and, secondly, to compare the empiricalresults of two dierent stated preference discrete choice approaches.They dier in the measurement scale for the dependent variable and,therefore, in the estimation method, despite both using a multinomiallogit. One of the approaches uses a complete ranking of full-profiles(contingent ranking), that is, individuals must rank a set ofalternatives from the most to the least preferred, and the other usesa first-choice rule in which individuals must select the most preferredoption from a choice set (choice experiment). From the results werealize how important the measurement scale for the dependent variablebecomes and, to what extent, procedure invariance is satisfied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Qualitative frameworks, especially those based on the logical discrete formalism, are increasingly used to model regulatory and signalling networks. A major advantage of these frameworks is that they do not require precise quantitative data, and that they are well-suited for studies of large networks. While numerous groups have developed specific computational tools that provide original methods to analyse qualitative models, a standard format to exchange qualitative models has been missing. RESULTS: We present the Systems Biology Markup Language (SBML) Qualitative Models Package ("qual"), an extension of the SBML Level 3 standard designed for computer representation of qualitative models of biological networks. We demonstrate the interoperability of models via SBML qual through the analysis of a specific signalling network by three independent software tools. Furthermore, the collective effort to define the SBML qual format paved the way for the development of LogicalModel, an open-source model library, which will facilitate the adoption of the format as well as the collaborative development of algorithms to analyse qualitative models. CONCLUSIONS: SBML qual allows the exchange of qualitative models among a number of complementary software tools. SBML qual has the potential to promote collaborative work on the development of novel computational approaches, as well as on the specification and the analysis of comprehensive qualitative models of regulatory and signalling networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Describes a method to code a decimated model of an isosurface on an octree representation while maintaining volume data if it is needed. The proposed technique is based on grouping the marching cubes (MC) patterns into five configurations according the topology and the number of planes of the surface that are contained in a cell. Moreover, the discrete number of planes on which the surface lays is fixed. Starting from a complete volume octree, with the isosurface codified at terminal nodes according to the new configuration, a bottom-up strategy is taken for merging cells. Such a strategy allows one to implicitly represent co-planar faces in the upper octree levels without introducing any error. At the end of this merging process, when it is required, a reconstruction strategy is applied to generate the surface contained in the octree intersected leaves. Some examples with medical data demonstrate that a reduction of up to 50% in the number of polygons can be achieved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The term reliability of an equipment or device is often meant to indicate the probability that it carries out the functions expected of it adequately or without failure and within specified performance limits at a given age for a desired mission time when put to use under the designated application and operating environmental stress. A broad classification of the approaches employed in relation to reliability studies can be made as probabilistic and deterministic, where the main interest in the former is to device tools and methods to identify the random mechanism governing the failure process through a proper statistical frame work, while the latter addresses the question of finding the causes of failure and steps to reduce individual failures thereby enhancing reliability. In the probabilistic attitude to which the present study subscribes to, the concept of life distribution, a mathematical idealisation that describes the failure times, is fundamental and a basic question a reliability analyst has to settle is the form of the life distribution. It is for no other reason that a major share of the literature on the mathematical theory of reliability is focussed on methods of arriving at reasonable models of failure times and in showing the failure patterns that induce such models. The application of the methodology of life time distributions is not confined to the assesment of endurance of equipments and systems only, but ranges over a wide variety of scientific investigations where the word life time may not refer to the length of life in the literal sense, but can be concieved in its most general form as a non-negative random variable. Thus the tools developed in connection with modelling life time data have found applications in other areas of research such as actuarial science, engineering, biomedical sciences, economics, extreme value theory etc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Study on variable stars is an important topic of modern astrophysics. After the invention of powerful telescopes and high resolving powered CCD’s, the variable star data is accumulating in the order of peta-bytes. The huge amount of data need lot of automated methods as well as human experts. This thesis is devoted to the data analysis on variable star’s astronomical time series data and hence belong to the inter-disciplinary topic, Astrostatistics. For an observer on earth, stars that have a change in apparent brightness over time are called variable stars. The variation in brightness may be regular (periodic), quasi periodic (semi-periodic) or irregular manner (aperiodic) and are caused by various reasons. In some cases, the variation is due to some internal thermo-nuclear processes, which are generally known as intrinsic vari- ables and in some other cases, it is due to some external processes, like eclipse or rotation, which are known as extrinsic variables. Intrinsic variables can be further grouped into pulsating variables, eruptive variables and flare stars. Extrinsic variables are grouped into eclipsing binary stars and chromospheri- cal stars. Pulsating variables can again classified into Cepheid, RR Lyrae, RV Tauri, Delta Scuti, Mira etc. The eruptive or cataclysmic variables are novae, supernovae, etc., which rarely occurs and are not periodic phenomena. Most of the other variations are periodic in nature. Variable stars can be observed through many ways such as photometry, spectrophotometry and spectroscopy. The sequence of photometric observa- xiv tions on variable stars produces time series data, which contains time, magni- tude and error. The plot between variable star’s apparent magnitude and time are known as light curve. If the time series data is folded on a period, the plot between apparent magnitude and phase is known as phased light curve. The unique shape of phased light curve is a characteristic of each type of variable star. One way to identify the type of variable star and to classify them is by visually looking at the phased light curve by an expert. For last several years, automated algorithms are used to classify a group of variable stars, with the help of computers. Research on variable stars can be divided into different stages like observa- tion, data reduction, data analysis, modeling and classification. The modeling on variable stars helps to determine the short-term and long-term behaviour and to construct theoretical models (for eg:- Wilson-Devinney model for eclips- ing binaries) and to derive stellar properties like mass, radius, luminosity, tem- perature, internal and external structure, chemical composition and evolution. The classification requires the determination of the basic parameters like pe- riod, amplitude and phase and also some other derived parameters. Out of these, period is the most important parameter since the wrong periods can lead to sparse light curves and misleading information. Time series analysis is a method of applying mathematical and statistical tests to data, to quantify the variation, understand the nature of time-varying phenomena, to gain physical understanding of the system and to predict future behavior of the system. Astronomical time series usually suffer from unevenly spaced time instants, varying error conditions and possibility of big gaps. This is due to daily varying daylight and the weather conditions for ground based observations and observations from space may suffer from the impact of cosmic ray particles. Many large scale astronomical surveys such as MACHO, OGLE, EROS, xv ROTSE, PLANET, Hipparcos, MISAO, NSVS, ASAS, Pan-STARRS, Ke- pler,ESA, Gaia, LSST, CRTS provide variable star’s time series data, even though their primary intention is not variable star observation. Center for Astrostatistics, Pennsylvania State University is established to help the astro- nomical community with the aid of statistical tools for harvesting and analysing archival data. Most of these surveys releases the data to the public for further analysis. There exist many period search algorithms through astronomical time se- ries analysis, which can be classified into parametric (assume some underlying distribution for data) and non-parametric (do not assume any statistical model like Gaussian etc.,) methods. Many of the parametric methods are based on variations of discrete Fourier transforms like Generalised Lomb-Scargle peri- odogram (GLSP) by Zechmeister(2009), Significant Spectrum (SigSpec) by Reegen(2007) etc. Non-parametric methods include Phase Dispersion Minimi- sation (PDM) by Stellingwerf(1978) and Cubic spline method by Akerlof(1994) etc. Even though most of the methods can be brought under automation, any of the method stated above could not fully recover the true periods. The wrong detection of period can be due to several reasons such as power leakage to other frequencies which is due to finite total interval, finite sampling interval and finite amount of data. Another problem is aliasing, which is due to the influence of regular sampling. Also spurious periods appear due to long gaps and power flow to harmonic frequencies is an inherent problem of Fourier methods. Hence obtaining the exact period of variable star from it’s time series data is still a difficult problem, in case of huge databases, when subjected to automation. As Matthew Templeton, AAVSO, states “Variable star data analysis is not always straightforward; large-scale, automated analysis design is non-trivial”. Derekas et al. 2007, Deb et.al. 2010 states “The processing of xvi huge amount of data in these databases is quite challenging, even when looking at seemingly small issues such as period determination and classification”. It will be beneficial for the variable star astronomical community, if basic parameters, such as period, amplitude and phase are obtained more accurately, when huge time series databases are subjected to automation. In the present thesis work, the theories of four popular period search methods are studied, the strength and weakness of these methods are evaluated by applying it on two survey databases and finally a modified form of cubic spline method is intro- duced to confirm the exact period of variable star. For the classification of new variable stars discovered and entering them in the “General Catalogue of Vari- able Stars” or other databases like “Variable Star Index“, the characteristics of the variability has to be quantified in term of variable star parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La variable aleatoria es una función matemática que permite asignar valores numéricos a cada uno de los posibles resultados obtenidos en un evento de naturaleza aleatoria. Si el número de estos resultados se puede contar, se tiene un conjunto discreto; por el contrario, cuando el número de resultados es infinito y no se puede contar, se tiene un conjunto continuo. El objetivo de la variable aleatoria es permitir adelantar estudios probabilísticos y estadísticos a partir del establecimiento de una asignación numérica a través de la cual se identifiquen cada uno de los resultados que pueden ser obtenidos en el desarrollo de un evento determinado. El valor esperado y la varianza son los parámetros por medio de los cuales es posible caracterizar el comportamiento de los datos reunidos en el desarrollo de una situación experimental; el valor esperado permite establecer el valor sobre el cual se centra la distribución de la probabilidad, mientras que la varianza proporciona información acerca de la manera como se distribuyen los datos obtenidos. Adicionalmente, las distribuciones de probabilidad son funciones numéricas asociadas a la variable aleatoria que describen la asignación de probabilidad para cada uno de los elementos del espacio muestral y se caracterizan por ser un conjunto de parámetros que establecen su comportamiento funcional, es decir, cada uno de los parámetros propios de la distribución suministra información del experimento aleatorio al que se asocia. El documento se cierra con una aproximación de la variable aleatoria a procesos de toma de decisión que implican condiciones de riesgo e incertidumbre.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Describes a method to code a decimated model of an isosurface on an octree representation while maintaining volume data if it is needed. The proposed technique is based on grouping the marching cubes (MC) patterns into five configurations according the topology and the number of planes of the surface that are contained in a cell. Moreover, the discrete number of planes on which the surface lays is fixed. Starting from a complete volume octree, with the isosurface codified at terminal nodes according to the new configuration, a bottom-up strategy is taken for merging cells. Such a strategy allows one to implicitly represent co-planar faces in the upper octree levels without introducing any error. At the end of this merging process, when it is required, a reconstruction strategy is applied to generate the surface contained in the octree intersected leaves. Some examples with medical data demonstrate that a reduction of up to 50% in the number of polygons can be achieved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two wavelet-based control variable transform schemes are described and are used to model some important features of forecast error statistics for use in variational data assimilation. The first is a conventional wavelet scheme and the other is an approximation of it. Their ability to capture the position and scale-dependent aspects of covariance structures is tested in a two-dimensional latitude-height context. This is done by comparing the covariance structures implied by the wavelet schemes with those found from the explicit forecast error covariance matrix, and with a non-wavelet- based covariance scheme used currently in an operational assimilation scheme. Qualitatively, the wavelet-based schemes show potential at modeling forecast error statistics well without giving preference to either position or scale-dependent aspects. The degree of spectral representation can be controlled by changing the number of spectral bands in the schemes, and the least number of bands that achieves adequate results is found for the model domain used. Evidence is found of a trade-off between the localization of features in positional and spectral spaces when the number of bands is changed. By examining implied covariance diagnostics, the wavelet-based schemes are found, on the whole, to give results that are closer to diagnostics found from the explicit matrix than from the nonwavelet scheme. Even though the nature of the covariances has the right qualities in spectral space, variances are found to be too low at some wavenumbers and vertical correlation length scales are found to be too long at most scales. The wavelet schemes are found to be good at resolving variations in position and scale-dependent horizontal length scales, although the length scales reproduced are usually too short. The second of the wavelet-based schemes is often found to be better than the first in some important respects, but, unlike the first, it has no exact inverse transform.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work compares and contrasts results of classifying time-domain ECG signals with pathological conditions taken from the MITBIH arrhythmia database. Linear discriminant analysis and a multi-layer perceptron were used as classifiers. The neural network was trained by two different methods, namely back-propagation and a genetic algorithm. Converting the time-domain signal into the wavelet domain reduced the dimensionality of the problem at least 10-fold. This was achieved using wavelets from the db6 family as well as using adaptive wavelets generated using two different strategies. The wavelet transforms used in this study were limited to two decomposition levels. A neural network with evolved weights proved to be the best classifier with a maximum of 99.6% accuracy when optimised wavelet-transform ECG data wits presented to its input and 95.9% accuracy when the signals presented to its input were decomposed using db6 wavelets. The linear discriminant analysis achieved a maximum classification accuracy of 95.7% when presented with optimised and 95.5% with db6 wavelet coefficients. It is shown that the much simpler signal representation of a few wavelet coefficients obtained through an optimised discrete wavelet transform facilitates the classification of non-stationary time-variant signals task considerably. In addition, the results indicate that wavelet optimisation may improve the classification ability of a neural network. (c) 2005 Elsevier B.V. All rights reserved.