847 resultados para Discrete Regression and Qualitative Choice Models
Resumo:
One of the primary desired capabilities of any future air traffic separation management system is the ability to provide early conflict detection and resolution effectively and efficiently. In this paper, we consider the risk of conflict as a primary measurement to be used for early conflict detection. This paper focuses on developing a novel approach to assess the impact of different measurement uncertainty models on the estimated risk of conflict. The measurement uncertainty model can be used to represent different sensor accuracy and sensor choices. Our study demonstrates the value of modelling measurement uncertainty in the conflict risk estimation problem and presents techniques providing a means of assessing sensor requirements to achieve desired conflict detection performance.
Resumo:
Executive Summary Emergency health is a critical component of Australia’s health system and emergency departments (EDs) are increasingly congested from growing demand and blocked access to inpatient beds. The Emergency Health Services Queensland (EHSQ) study aims to identify the factors driving increased demand for emergency health and to evaluate strategies which may safely reduce the future demand growth. This monograph addresses the perspectives of users of both ambulance services and EDs. The research reported here aimed to identify the perspectives of users of emergency health services, both ambulance services and public hospital Emergency Departments and to identify the factors that they took into consideration when exercising their choice of location for acute health care. A cross-sectional survey design was used involving a survey of patients or their carers presenting to the EDs of a stratified sample of eight hospitals. A specific purpose questionnaire was developed based on a novel theoretical model which had been derived from analysis of the literature (Monograph 1). Two survey versions were developed: one for adult patients (self-complete); and one for children (to be completed by parents/guardians). The questionnaires measured perceptions of social support, health status, illness severity, self-efficacy; beliefs and attitudes towards ED and ambulance services; reasons for using these services, and actions taken prior to the service request. The survey was conducted at a stratified sample of eight hospitals representing major cities (four), inner regional (two) and outer regional and remote (two). Due to practical limitations, data were collected for ambulance and ED users within hospital EDs, while patients were waiting for or under treatment. A sample size quota was determined for each ED based on their 2009/10 presentation volumes. The data collection was conducted by four members of the research team and a group of eight interviewers between March and May 2011 (corresponding to autumn season). Of the total of 1608 patients in all eight emergency departments the interviewers were able to approach 1361 (85%) patients and seek their consent to participate in the study. In total, 911 valid surveys were available for analysis (response rate= 67%). These studies demonstrate that patients elected to attend hospital EDs in a considered fashion after weighing up alternatives and there is no evidence of deliberate or ill-informed misuse. • Patients attending ED have high levels of social support and self-efficacy that speak to the considered and purposeful nature of the exercise of choice. • About one third of patients have new conditions while two thirds have chronic illnesses • More than half the attendees (53.1%) had consulted a healthcare professional prior to making the decision. • The decision to seek urgent care at an ED was mostly constructed around the patient’s perception of the urgency and severity of their illness, reinforced by a strong perception that the hospital ED was the correct location for them (better specialised staff, better care for my condition, other options not as suitable). • 33% of the respondent held private hospital insurance but nevertheless attended a public hospital ED. Similarly patients exercised considered and rational judgements in their choice to seek help from the ambulance service. • The decision to call for ambulance assistance was based on a strong perception about the severity of the illness (too severe to use other means of transport) and that other options were not considered appropriate. • The decision also appeared influenced by a perception that the ambulance provided appropriate access to the ED which was considered most appropriate for their particular condition (too severe to go elsewhere, all facilities in one spot, better specialised and better care). • In 43.8% of cases a health care professional advised use of the ambulance. • Only a small number of people perceived that ambulance should be freely available regardless of severity or appropriateness. These findings confirm a growing understanding that the choice of professional emergency health care services is not made lightly but rather made by reasonable people exercising a judgement which is influenced by public awareness of the risks of acute health and which is most often informed by health professionals. It is also made on the basis of a rational weighing up of alternatives and a deliberate and considered choice to seek assistance from a service which the patient perceived was most appropriate to their needs at that time. These findings add weight to dispensing with public perceptions that ED and ambulance congestion is a result of inappropriate choice by patients. The challenge for health services is to better understand the patient’s needs and to design and validate services that meet those needs. The failure of our health system to do so should not be grounds for blaming the patient, claiming inappropriate patient choices.
Resumo:
Protein structure space is believed to consist of a finite set of discrete folds, unlike the protein sequence space which is astronomically large, indicating that proteins from the available sequence space are likely to adopt one of the many folds already observed. In spite of extensive sequence-structure correlation data, protein structure prediction still remains an open question with researchers having tried different approaches (experimental as well as computational). One of the challenges of protein structure prediction is to identify the native protein structures from a milieu of decoys/models. In this work, a rigorous investigation of Protein Structure Networks (PSNs) has been performed to detect native structures from decoys/ models. Ninety four parameters obtained from network studies have been optimally combined with Support Vector Machines (SVM) to derive a general metric to distinguish decoys/models from the native protein structures with an accuracy of 94.11%. Recently, for the first time in the literature we had shown that PSN has the capability to distinguish native proteins from decoys. A major difference between the present work and the previous study is to explore the transition profiles at different strengths of non-covalent interactions and SVM has indeed identified this as an important parameter. Additionally, the SVM trained algorithm is also applied to the recent CASP10 predicted models. The novelty of the network approach is that it is based on general network properties of native protein structures and that a given model can be assessed independent of any reference structure. Thus, the approach presented in this paper can be valuable in validating the predicted structures. A web-server has been developed for this purpose and is freely available at http://vishgraph.mbu.iisc.ernet.in/GraProStr/PSN-QA.html.
Resumo:
Vernacular dwellings are well-suited climate-responsive designs that adopt local materials and skills to support comfortable indoor environments in response to local climatic conditions. These naturally-ventilated passive dwellings have enabled civilizations to sustain even in extreme climatic conditions. The design and physiological resilience of the inhabitants have coevolved to be attuned to local climatic and environmental conditions. Such adaptations have perplexed modern theories in human thermal-comfort that have evolved in the era of electricity and air-conditioned buildings. Vernacular local building elements like rubble walls and mud roofs are given way to burnt brick walls and reinforced cement concrete tin roofs. Over 60% of Indian population is rural, and implications of such transitions on thermal comfort and energy in buildings are crucial to understand. Types of energy use associated with a buildings life cycle include its embodied energy, operational and maintenance energy, demolition and disposal energy. Embodied Energy (EE) represents total energy consumption for construction of building, i.e., embodied energy of building materials, material transportation energy and building construction energy. Embodied energy of building materials forms major contribution to embodied energy in buildings. Operational energy (OE) in buildings mainly contributed by space conditioning and lighting requirements, depends on the climatic conditions of the region and comfort requirements of the building occupants. Less energy intensive natural materials are used for traditional buildings and the EE of traditional buildings is low. Transition in use of materials causes significant impact on embodied energy of vernacular dwellings. Use of manufactured, energy intensive materials like brick, cement, steel, glass etc. contributes to high embodied energy in these dwellings. This paper studies the increase in EE of the dwelling attributed to change in wall materials. Climatic location significantly influences operational energy in dwellings. Buildings located in regions experiencing extreme climatic conditions would require more operational energy to satisfy the heating and cooling energy demands throughout the year. Traditional buildings adopt passive techniques or non-mechanical methods for space conditioning to overcome the vagaries of extreme climatic variations and hence less operational energy. This study assesses operational energy in traditional dwelling with regard to change in wall material and climatic location. OE in the dwellings has been assessed for hot-dry, warm humid and moderate climatic zones. Choice of thermal comfort models is yet another factor which greatly influences operational energy assessment in buildings. The paper adopts two popular thermal-comfort models, viz., ASHRAE comfort standards and TSI by Sharma and Ali to investigate thermal comfort aspects and impact of these comfort models on OE assessment in traditional dwellings. A naturally ventilated vernacular dwelling in Sugganahalli, a village close to Bangalore (India), set in warm - humid climate is considered for present investigations on impact of transition in building materials, change in climatic location and choice of thermal comfort models on energy in buildings. The study includes a rigorous real time monitoring of the thermal performance of the dwelling. Dynamic simulation models validated by measured data have also been adopted to determine the impact of the transition from vernacular to modern material-configurations. Results of the study and appraisal for appropriate thermal comfort standards for computing operational energy has been presented and discussed in this paper. (c) 2014 K.I. Praseeda. Published by Elsevier Ltd.
Resumo:
Lee M.H., Qualitative Circuit Models in Failure Analysis Reasoning, AI Journal. vol 111, pp239-276.1999.
Resumo:
Coghill, G. M., Garrett, S. M. and King, R. D. (2004) Learning Qualitative Metabolic Models. European Conference on Artificial Intelligence (ECAI'04)
Resumo:
Marnet, Oliver, 'History repeats itself: The failure of rational choice models in corporate governance', Critical Perspectives on Accounting (2005) 18(2) pp.191-210 RAE2008
Resumo:
Homology modeling was used to build 3D models of the N-methyl-D-aspartate (NMDA) receptor glycine binding site on the basis of an X-ray structure of the water-soluble AMPA-sensitive receptor. The docking of agonists and antagonists to these models was used to reveal binding modes of ligands and to explain known structure-activity relationships. Two types of quantitative models, 3D-QSAR/CoMFA and a regression model based on docking energies, were built for antagonists (derivatives of 4-hydroxy-2-quinolone, quinoxaline-2,3-dione, and related compounds). The CoMFA steric and electrostatic maps were superimposed on the homology-based model, and a close correspondence was marked. The derived computational models have permitted the evaluation of the structural features crucial for high glycine binding site affinity and are important for the design of new ligands.
Resumo:
The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.
Resumo:
We consider a fully complex-valued radial basis function (RBF) network for regression and classification applications. For regression problems, the locally regularised orthogonal least squares (LROLS) algorithm aided with the D-optimality experimental design, originally derived for constructing parsimonious real-valued RBF models, is extended to the fully complex-valued RBF (CVRBF) network. Like its real-valued counterpart, the proposed algorithm aims to achieve maximised model robustness and sparsity by combining two effective and complementary approaches. The LROLS algorithm alone is capable of producing a very parsimonious model with excellent generalisation performance while the D-optimality design criterion further enhances the model efficiency and robustness. By specifying an appropriate weighting for the D-optimality cost in the combined model selecting criterion, the entire model construction procedure becomes automatic. An example of identifying a complex-valued nonlinear channel is used to illustrate the regression application of the proposed fully CVRBF network. The proposed fully CVRBF network is also applied to four-class classification problems that are typically encountered in communication systems. A complex-valued orthogonal forward selection algorithm based on the multi-class Fisher ratio of class separability measure is derived for constructing sparse CVRBF classifiers that generalise well. The effectiveness of the proposed algorithm is demonstrated using the example of nonlinear beamforming for multiple-antenna aided communication systems that employ complex-valued quadrature phase shift keying modulation scheme. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A fundamental principle in practical nonlinear data modeling is the parsimonious principle of constructing the minimal model that explains the training data well. Leave-one-out (LOO) cross validation is often used to estimate generalization errors by choosing amongst different network architectures (M. Stone, "Cross validatory choice and assessment of statistical predictions", J. R. Stast. Soc., Ser. B, 36, pp. 117-147, 1974). Based upon the minimization of LOO criteria of either the mean squares of LOO errors or the LOO misclassification rate respectively, we present two backward elimination algorithms as model post-processing procedures for regression and classification problems. The proposed backward elimination procedures exploit an orthogonalization procedure to enable the orthogonality between the subspace as spanned by the pruned model and the deleted regressor. Subsequently, it is shown that the LOO criteria used in both algorithms can be calculated via some analytic recursive formula, as derived in this contribution, without actually splitting the estimation data set so as to reduce computational expense. Compared to most other model construction methods, the proposed algorithms are advantageous in several aspects; (i) There are no tuning parameters to be optimized through an extra validation data set; (ii) The procedure is fully automatic without an additional stopping criteria; and (iii) The model structure selection is directly based on model generalization performance. The illustrative examples on regression and classification are used to demonstrate that the proposed algorithms are viable post-processing methods to prune a model to gain extra sparsity and improved generalization.
Resumo:
A new parameter-estimation algorithm, which minimises the cross-validated prediction error for linear-in-the-parameter models, is proposed, based on stacked regression and an evolutionary algorithm. It is initially shown that cross-validation is very important for prediction in linear-in-the-parameter models using a criterion called the mean dispersion error (MDE). Stacked regression, which can be regarded as a sophisticated type of cross-validation, is then introduced based on an evolutionary algorithm, to produce a new parameter-estimation algorithm, which preserves the parsimony of a concise model structure that is determined using the forward orthogonal least-squares (OLS) algorithm. The PRESS prediction errors are used for cross-validation, and the sunspot and Canadian lynx time series are used to demonstrate the new algorithms.
Resumo:
Although difference-stationary (DS) and trend-stationary (TS) processes have been subject to considerable analysis, there are no direct comparisons for each being the data-generation process (DGP). We examine incorrect choice between these models for forecasting for both known and estimated parameters. Three sets of Monte Carlo simulations illustrate the analysis, to evaluate the biases in conventional standard errors when each model is mis-specified, compute the relative mean-square forecast errors of the two models for both DGPs, and investigate autocorrelated errors, so both models can better approximate the converse DGP. The outcomes are surprisingly different from established results.
Resumo:
In this paper we employ a hypothetical discrete choice experiment (DCE) to examine how much consumers are willing to pay to use technology to customize their food shopping. We conjecture that customized information provision can aid in the composition of a healthier shop. Our results reveal that consumers are prepared to pay relatively more for individual specic information as opposed to generic nutritional information that is typically provided on food labels. In arriving at these results we have examined various model specications including those that make use of ex-post de-brieng questions on attribute nonattendance and attribute ranking information and those that consider the time taken to complete the survey. Our main results are robust to the various model specications we examine