237 resultados para Dimensioning


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho de Projecto para obtenção do grau de Mestre em Engenharia Civil

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica com Especialização em Energia, Climatização e Refrigeração

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho de Projecto para obtenção do grau de Mestre em Engenharia Civil Perfil Estruturas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho de Projecto para obtenção do grau de Mestre em Engenharia Civil Perfil Estruturas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Civil Área de Especialização em Estruturas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Estruturas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Embedded real-time applications increasingly present high computation requirements, which need to be completed within specific deadlines, but that present highly variable patterns, depending on the set of data available in a determined instant. The current trend to provide parallel processing in the embedded domain allows providing higher processing power; however, it does not address the variability in the processing pattern. Dimensioning each device for its worst-case scenario implies lower average utilization, and increased available, but unusable, processing in the overall system. A solution for this problem is to extend the parallel execution of the applications, allowing networked nodes to distribute the workload, on peak situations, to neighbour nodes. In this context, this report proposes a framework to develop parallel and distributed real-time embedded applications, transparently using OpenMP and Message Passing Interface (MPI), within a programming model based on OpenMP. The technical report also devises an integrated timing model, which enables the structured reasoning on the timing behaviour of these hybrid architectures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the steady increase in experimental deployments, most of research work on WSNs has focused only on communication protocols and algorithms, with a clear lack of effective, feasible and usable system architectures, integrated in a modular platform able to address both functional and non–functional requirements. In this paper, we outline EMMON [1], a full WSN-based system architecture for large–scale, dense and real–time embedded monitoring [3] applications. EMMON provides a hierarchical communication architecture together with integrated middleware and command and control software. Then, EM-Set, the EMMON engineering toolset will be presented. EM-Set includes a network deployment planning, worst–case analysis and dimensioning, protocol simulation and automatic remote programming and hardware testing tools. This toolset was crucial for the development of EMMON which was designed to use standard commercially available technologies, while maintaining as much flexibility as possible to meet specific applications requirements. Finally, the EMMON architecture has been validated through extensive simulation and experimental evaluation, including a 300+ nodes testbed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most research work on WSNs has focused on protocols or on specific applications. There is a clear lack of easy/ready-to-use WSN technologies and tools for planning, implementing, testing and commissioning WSN systems in an integrated fashion. While there exists a plethora of papers about network planning and deployment methodologies, to the best of our knowledge none of them helps the designer to match coverage requirements with network performance evaluation. In this paper we aim at filling this gap by presenting an unified toolset, i.e., a framework able to provide a global picture of the system, from the network deployment planning to system test and validation. This toolset has been designed to back up the EMMON WSN system architecture for large-scale, dense, real-time embedded monitoring. It includes network deployment planning, worst-case analysis and dimensioning, protocol simulation and automatic remote programming and hardware testing tools. This toolset has been paramount to validate the system architecture through DEMMON1, the first EMMON demonstrator, i.e., a 300+ node test-bed, which is, to the best of our knowledge, the largest single-site WSN test-bed in Europe to date.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modeling the fundamental performance limits of Wireless Sensor Networks (WSNs) is of paramount importance to understand their behavior under worst-case conditions and to make the appropriate design choices. In that direction this paper contributes with an analytical methodology for modeling cluster-tree WSNs where the data sink can either be static or mobile. We assess the validity and pessimism of analytical model by comparing the worst-case results with the values measured through an experimental test-bed based on Commercial-Off- The-Shelf (COTS) technologies, namely TelosB motes running TinyOS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The IEEE 802.15.4 protocol proposes a flexible communication solution for Low-Rate Wireless Personal Area Networks including sensor networks. It presents the advantage to fit different requirements of potential applications by adequately setting its parameters. When enabling its beacon mode, the protocol makes possible real-time guarantees by using its Guaranteed Time Slot (GTS) mechanism. This paper analyzes the performance of the GTS allocation mechanism in IEEE 802.15.4. The analysis gives a full understanding of the behavior of the GTS mechanism with regards to delay and throughput metrics. First, we propose two accurate models of service curves for a GTS allocation as a function of the IEEE 802.15.4 parameters. We then evaluate the delay bounds guaranteed by an allocation of a GTS using Network Calculus formalism. Finally, based on the analytic results, we analyze the impact of the IEEE 802.15.4 parameters on the throughput and delay bound guaranteed by a GTS allocation. The results of this work pave the way for an efficient dimensioning of an IEEE 802.15.4 cluster.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Engenharia Civil – ramo Tecnologia e Gestão das Construções

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Eletrotécnica Ramo de Automação e eletrónica Industrial

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica no Ramo de Automação e Electrónica Industrial