952 resultados para Digital elevation model (DEM)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Every year, debris flows cause huge damage in mountainous areas. Due to population pressure in hazardous zones, the socio-economic impact is much higher than in the past. Therefore, the development of indicative susceptibility hazard maps is of primary importance, particularly in developing countries. However, the complexity of the phenomenon and the variability of local controlling factors limit the use of processbased models for a first assessment. A debris flow model has been developed for regional susceptibility assessments using digital elevation model (DEM) with a GIS-based approach.. The automatic identification of source areas and the estimation of debris flow spreading, based on GIS tools, provide a substantial basis for a preliminary susceptibility assessment at a regional scale. One of the main advantages of this model is its workability. In fact, everything is open to the user, from the data choice to the selection of the algorithms and their parameters. The Flow-R model was tested in three different contexts: two in Switzerland and one in Pakistan, for indicative susceptibility hazard mapping. It was shown that the quality of the DEM is the most important parameter to obtain reliable results for propagation, but also to identify the potential debris flows sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of susceptibility maps for debris flows is of primary importance due to population pressure in hazardous zones. However, hazard assessment by processbased modelling at a regional scale is difficult due to the complex nature of the phenomenon, the variability of local controlling factors, and the uncertainty in modelling parameters. A regional assessment must consider a simplified approach that is not highly parameter dependant and that can provide zonation with minimum data requirements. A distributed empirical model has thus been developed for regional susceptibility assessments using essentially a digital elevation model (DEM). The model is called Flow-R for Flow path assessment of gravitational hazards at a Regional scale (available free of charge under www.flow-r.org) and has been successfully applied to different case studies in various countries with variable data quality. It provides a substantial basis for a preliminary susceptibility assessment at a regional scale. The model was also found relevant to assess other natural hazards such as rockfall, snow avalanches and floods. The model allows for automatic source area delineation, given user criteria, and for the assessment of the propagation extent based on various spreading algorithms and simple frictional laws.We developed a new spreading algorithm, an improved version of Holmgren's direction algorithm, that is less sensitive to small variations of the DEM and that is avoiding over-channelization, and so produces more realistic extents. The choices of the datasets and the algorithms are open to the user, which makes it compliant for various applications and dataset availability. Amongst the possible datasets, the DEM is the only one that is really needed for both the source area delineation and the propagation assessment; its quality is of major importance for the results accuracy. We consider a 10m DEM resolution as a good compromise between processing time and quality of results. However, valuable results have still been obtained on the basis of lower quality DEMs with 25m resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing availability and precision of digital elevation model (DEM) helps in the assessment of landslide prone areas where only few data are available. This approach is performed in 6 main steps which include: DEM creation; identification of geomorphologic features; determination of the main sets of discontinuities; mapping of the most likely dangerous structures; preliminary rock-fall assessment; estimation of the large instabilities volumes. The method is applied to two the cases studies in the Oppstadhornet mountain (730m alt): (1) a 10 millions m3 slow-moving rockslide and (2) a potential high-energy rock falling prone area. The orientations of the foliation and of the major discontinuities have been determined directly from the DEM. These results are in very good agreement with field measurements. Spatial arrangements of discontinuities and foliation with the topography revealed hazardous structures. Maps of potential occurrence of these hazardous structures show highly probable sliding areas at the foot of the main landslide and potential rock falls in the eastern part of the mountain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In October 1998, Hurricane Mitch triggered numerous landslides (mainly debris flows) in Honduras and Nicaragua, resulting in a high death toll and in considerable damage to property. The potential application of relatively simple and affordable spatial prediction models for landslide hazard mapping in developing countries was studied. Our attention was focused on a region in NW Nicaragua, one of the most severely hit places during the Mitch event. A landslide map was obtained at 1:10 000 scale in a Geographic Information System (GIS) environment from the interpretation of aerial photographs and detailed field work. In this map the terrain failure zones were distinguished from the areas within the reach of the mobilized materials. A Digital Elevation Model (DEM) with 20 m×20 m of pixel size was also employed in the study area. A comparative analysis of the terrain failures caused by Hurricane Mitch and a selection of 4 terrain factors extracted from the DEM which, contributed to the terrain instability, was carried out. Land propensity to failure was determined with the aid of a bivariate analysis and GIS tools in a terrain failure susceptibility map. In order to estimate the areas that could be affected by the path or deposition of the mobilized materials, we considered the fact that under intense rainfall events debris flows tend to travel long distances following the maximum slope and merging with the drainage network. Using the TauDEM extension for ArcGIS software we generated automatically flow lines following the maximum slope in the DEM starting from the areas prone to failure in the terrain failure susceptibility map. The areas crossed by the flow lines from each terrain failure susceptibility class correspond to the runout susceptibility classes represented in a runout susceptibility map. The study of terrain failure and runout susceptibility enabled us to obtain a spatial prediction for landslides, which could contribute to landslide risk mitigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ground surface net solar radiation is the energy that drives physical and chemical processes at the ground surface. In this paper, multi-spectral data from the Landsat-5 TM, topographic data from a gridded digital elevation model, field measurements, and the atmosphere model LOWTRAN 7 are used to estimate surface net solar radiation over the FIFE site. Firstly an improved method is presented and used for calculating total surface incoming radiation. Then, surface albedo is integrated from surface reflectance factors derived from remotely sensed data from Landsat-5 TM. Finally, surface net solar radiation is calculated by subtracting surface upwelling radiation from the total surface incoming radiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incorporation of numerical weather predictions (NWP) into a flood forecasting system can increase forecast lead times from a few hours to a few days. A single NWP forecast from a single forecast centre, however, is insufficient as it involves considerable non-predictable uncertainties and lead to a high number of false alarms. The availability of global ensemble numerical weather prediction systems through the THORPEX Interactive Grand Global Ensemble' (TIGGE) offers a new opportunity for flood forecast. The Grid-Xinanjiang distributed hydrological model, which is based on the Xinanjiang model theory and the topographical information of each grid cell extracted from the Digital Elevation Model (DEM), is coupled with ensemble weather predictions based on the TIGGE database (CMC, CMA, ECWMF, UKMO, NCEP) for flood forecast. This paper presents a case study using the coupled flood forecasting model on the Xixian catchment (a drainage area of 8826 km2) located in Henan province, China. A probabilistic discharge is provided as the end product of flood forecast. Results show that the association of the Grid-Xinanjiang model and the TIGGE database gives a promising tool for an early warning of flood events several days ahead.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The North Paraíba River Estuary, located in the eastern portion of the Paraíba State, Northeast Brazil, on coordinates 34º50 00 -34º57 30 S and 6º55 00 -7º7 30 W, constitutes a fluvio-marine plain formed by the North Paraíba River and its tributaries Sanhauá, Paroeira, Mandacaru, Tiriri, Tambiá, Ribeira and Guia. This estuary comprises an area of about 260 km2. Increasing human demands on the estuary area and inadequate environment managing have generated conflicts. The present work main purpose is to evaluate the geodynamic evolution of the North Paraíba River Estuary in the period from 1969 to 2001, using digital image processing techniques, thematic digital cartography and multitemporal data integration, combined to geological-geophysical field surveys. The SUDENE cartographic database, converted to digital format were, used to obtain occupation and topographic maps from 1969 and to generate a Digital Elevation Model (DEM). Digital Landsat 7 ETM+ and Spot HRVIR-PAN satellite images interpretation allowed the environmental characterization of the estuary. The most important digital processing results were achieved color composites RGB 5-4-3, 5-3-1, 5-2-NDWI and band ratio 7/4-5/3-4/2, 5/7-3/1-5/4). In addition the fusion image technique RGBI was used by the inclusion of the Spot HRVRI and Landsat 7 ETM+ panchromatic band on I layer with RGB triplets 5-4-3, 5-3-1 and 5/7-3/1-5/4. The DEM and digital images integration allowed the identification of seven geomorphological units: coastal tableland, flowing tray, tide plain, fluvial terrace, submerged dune, beach plain and beach). Both Side Scan Sonar and Echosound were used to analyse underwater surface and bedforms of the estuarine channel, sand predominance (fine to very fine) and 2D dune features 5 m wide and 0.5 m height. This investigation characterized the estuary as an environment dominated by regimen of average flow. The channel depth varies between 1 m and 11 m, being this last quota reached in the area of Porto de Cabedelo. The chanel estuary is relatively shallow, with erosion evidences mainly on its superior portion, attested by sand banks exposed during the low tide. Multitemporal digital maps from 1969 and 2001 integration were obtained through geoprocessing techniques, resulting the geodynamic evolution of the estuary based on landuse, DEM geomorphology and bathymetric maps

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of susceptibility maps for debris flows is of primary importance due to population pressure in hazardous zones. However, hazard assessment by process-based modelling at a regional scale is difficult due to the complex nature of the phenomenon, the variability of local controlling factors, and the uncertainty in modelling parameters. A regional assessment must consider a simplified approach that is not highly parameter dependant and that can provide zonation with minimum data requirements. A distributed empirical model has thus been developed for regional susceptibility assessments using essentially a digital elevation model (DEM). The model is called Flow-R for Flow path assessment of gravitational hazards at a Regional scale (available free of charge under http://www.flow-r.org) and has been successfully applied to different case studies in various countries with variable data quality. It provides a substantial basis for a preliminary susceptibility assessment at a regional scale. The model was also found relevant to assess other natural hazards such as rockfall, snow avalanches and floods. The model allows for automatic source area delineation, given user criteria, and for the assessment of the propagation extent based on various spreading algorithms and simple frictional laws. We developed a new spreading algorithm, an improved version of Holmgren's direction algorithm, that is less sensitive to small variations of the DEM and that is avoiding over-channelization, and so produces more realistic extents. The choices of the datasets and the algorithms are open to the user, which makes it compliant for various applications and dataset availability. Amongst the possible datasets, the DEM is the only one that is really needed for both the source area delineation and the propagation assessment; its quality is of major importance for the results accuracy. We consider a 10 m DEM resolution as a good compromise between processing time and quality of results. However, valuable results have still been obtained on the basis of lower quality DEMs with 25 m resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Satellite remote sensing provides a powerful instrument for mapping and monitoring traces of historical settlements and infrastructure, not only in distant areas and crisis regions. It helps archaeologists to embed their findings from field surveys into the broader context of the landscape. With the start of the TanDEM-X mission, spatially explicit 3D-information is available to researchers at an unprecedented resolution worldwide. We examined different experimental TanDEM-X digital elevation models (DEM) that were processed from two different imaging modes (Stripmap/High Resolution Spotlight) using the operational alternating bistatic acquisition mode. The quality and accuracy of the experimental DEM products was compared to other available DEM products and a high precision archaeological field survey. The results indicate the potential of TanDEM-X Stripmap (SM) data for mapping surface elements at regional scale. For the alluvial plain of Cilicia, a suspected palaeochannel could be reconstructed. At the local scale, DEM products from TanDEM-X High Resolution Spotlight (HS) mode were processed at 2 m spatial resolution using a merge of two monostatic/bistatic interferograms. The absolute and relative vertical accuracy of the outcome meet the specification of high resolution elevation data (HRE) standards from the National System for Geospatial Intelligence (NSG) at the HRE20 level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interpretation of ice-core records requires accurate knowledge of the past and present surface topography and stress-strain fields. The European Project for Ice Coring in Antarctica (EPICA) drilling site (0.0684° E and 75.0025° S, 2891.7 m) in Dronning Maud Land, Antarctica, is located in the immediate vicinity of a transient and splitting ice divide. A digital elevation model is determined from the combination of kinematic GPS measurements with the GLAS12 data sets from the ICESat satellite. Based on a network of stakes, surveyed with static GPS, the velocity field around the EDML drilling site is calculated. The annual mean velocity magnitude of 12 survey points amounts to 0.74 m/a. Flow directions mainly vary according to their distance from the ice divide. Surface strain rates are determined from a pentagon-shaped stake network with one center point, close to the drilling site. The strain field is characterised by along flow compression, lateral dilatation, and vertical layer thinning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We produced a landscape scale map of mean tree height in mangrove forests in Everglades National Park (ENP) using the elevation data from the Shuttle Radar Topography Mission (SRTM). The SRTM data was calibrated using airborne lidar data and a high resolution USGS digital elevation model (DEM). The resulting mangrove height map has a mean tree height error of 2.0 m (RMSE) over a pixel of 30 m. In addition, we used field data to derive a relationship between mean forest stand height and biomass in order to map the spatial distribution of standing biomass of mangroves for the entire National Park. The estimation showed that most of the mangrove standing biomass in the ENP resides in intermediate- height mangrove stands around 8 m. We estimated the total mangrove standing biomass in ENP to be 5.6 X 109 kg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Question: How can the coexistence of savanna and forest in Amazonian areas with relatively uniform climates be explained? Location: Eastern Marajo Island, northeast Amazonia, Brazil. Methods: The study integrated floristic analysis, terrain morphology, sedimentology and delta(13)C of soil organic matter. Floristic analysis involved rapid ecological assessment of 33 sites, determination of occurrence, specific richness, hierarchical distribution and matrix of floristic similarity between paired vegetation types. Terrain characterization was based on analysis of Landsat images using 4(R), 5(G) and 7(B) composition and digital elevation model (DEM). Sedimentology involved field descriptions of surface and core sediments. Finally, radiocarbon dating and analysis of delta(13)C of soil profile organic matter and natural ecotone forest-savanna was undertaken. Results: Slight tectonic subsidence in eastern Marajo Island favours seasonal flooding, making it unsuitable for forest growth. However, this area displays slightly convex-up, sinuous morphologies related to paleochannels, covered by forest. Terra-firme lowland forests are expanding from west to east, preferentially occupying paleochannels and replacing savanna. Slack, running water during channel abandonment leads to disappearance of varzea/gallery forest at channel margins. Long-abandoned channels sustain continuous terra-firme forests, because of longer times for more species to establish. Recently abandoned channels have had less time to become sites for widespread tree development, and are either not vegetated or covered by savanna. Conclusion: Landforms in eastern Marajo Island reflect changes in the physical environment due to reactivation of tectonic faults during the latest Quaternary. This promoted a dynamic history of channel abandonment, which controlled a set of interrelated parameters (soil type, topography, hydrology) that determined species location. Inclusion of a geological perspective for paleoenvironmental reconstruction can increase understanding of plant distribution in Amazonia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our objective was to develop a methodology to predict soil fertility using visible near-infrared (vis-NIR) diffuse reflectance spectra and terrain attributes derived from a digital elevation model (DEM). Specifically, our aims were to: (i) assemble a minimum data set to develop a soil fertility index for sugarcane (Sarcharum officinarum L.) (SFI-SC) for biofuel production in tropical soils; (ii) construct a model to predict the SFI-SC using soil vis-NIR spectra and terrain attributes; and (iii) produce a soil fertility map for our study area and assess it by comparing it with a green vegetation index (GVI). The study area was 185 ha located in sao Paulo State, Brazil. In total, 184 soil samples were collected and analyzed for a range of soil chemical and physical properties. Their vis-NIR spectra were collected from 400 to 2500 nm. The Shuttle Radar Topographic Mission 3-arcsec (90-m resolution) DEM of the area was used to derive 17 terrain attributes. A minimum data set of soil properties was selected to develop the SFI-SC. The SFI-SC consisted of three classes: Class 1, the highly fertile soils; Class 2, the fertile soils; and Class 3, the least fertile soils. It was derived heuristically with conditionals and using expert knowledge. The index was modeled with the spectra and terrain data using cross-validated decision trees. The cross-validation of the model correctly predicted Class 1 in 75% of cases, Class 2 in 61%, and Class 3 in 65%. A fertility map was derived for the study area and compared with a map of the GVI. Our approach offers a methodology that incorporates expert knowledge to derive the SFI-SC and uses a versatile spectro-spatial methodology that may be implemented for rapid and accurate determination of soil fertility and better exploration of areas suitable for production.