986 resultados para Differential Geometry


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A noncommutative 2-torus is one of the main toy models of noncommutative geometry, and a noncommutative n-torus is a straightforward generalization of it. In 1980, Pimsner and Voiculescu in [17] described a 6-term exact sequence, which allows for the computation of the K-theory of noncommutative tori. It follows that both even and odd K-groups of n-dimensional noncommutative tori are free abelian groups on 2n-1 generators. In 1981, the Powers-Rieffel projector was described [19], which, together with the class of identity, generates the even K-theory of noncommutative 2-tori. In 1984, Elliott [10] computed trace and Chern character on these K-groups. According to Rieffel [20], the odd K-theory of a noncommutative n-torus coincides with the group of connected components of the elements of the algebra. In particular, generators of K-theory can be chosen to be invertible elements of the algebra. In Chapter 1, we derive an explicit formula for the First nontrivial generator of the odd K-theory of noncommutative tori. This gives the full set of generators for the odd K-theory of noncommutative 3-tori and 4-tori.

In Chapter 2, we apply the graded-commutative framework of differential geometry to the polynomial subalgebra of the noncommutative torus algebra. We use the framework of differential geometry described in [27], [14], [25], [26]. In order to apply this framework to noncommutative torus, the notion of the graded-commutative algebra has to be generalized: the "signs" should be allowed to take values in U(1), rather than just {-1,1}. Such generalization is well-known (see, e.g., [8] in the context of linear algebra). We reformulate relevant results of [27], [14], [25], [26] using this extended notion of sign. We show how this framework can be used to construct differential operators, differential forms, and jet spaces on noncommutative tori. Then, we compare the constructed differential forms to the ones, obtained from the spectral triple of the noncommutative torus. Sections 2.1-2.3 recall the basic notions from [27], [14], [25], [26], with the required change of the notion of "sign". In Section 2.4, we apply these notions to the polynomial subalgebra of the noncommutative torus algebra. This polynomial subalgebra is similar to a free graded-commutative algebra. We show that, when restricted to the polynomial subalgebra, Connes construction of differential forms gives the same answer as the one obtained from the graded-commutative differential geometry. One may try to extend these notions to the smooth noncommutative torus algebra, but this was not done in this work.

A reconstruction of the Beilinson-Bloch regulator (for curves) via Fredholm modules was given by Eugene Ha in [12]. However, the proof in [12] contains a critical gap; in Chapter 3, we close this gap. More specifically, we do this by obtaining some technical results, and by proving Property 4 of Section 3.7 (see Theorem 3.9.4), which implies that such reformulation is, indeed, possible. The main motivation for this reformulation is the longer-term goal of finding possible analogs of the second K-group (in the context of algebraic geometry and K-theory of rings) and of the regulators for noncommutative spaces. This work should be seen as a necessary preliminary step for that purpose.

For the convenience of the reader, we also give a short description of the results from [12], as well as some background material on central extensions and Connes-Karoubi character.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

170 p.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neste trabalho foi feito um estudo do limite de Karlhede para ondas pp. Para este fim, uma revisão rigorosa de Geometria Diferencial foi apresentada numa abordagem independente de sistemas de coordenadas. Além da abordagem usual, a curvatura de uma variedade riemanniana foi reescrita usando os formalismos de referenciais, formas diferenciais e espinores do grupo de Lorentz. O problema de equivalência para geometrias riemannianas foi formulado e as peculiaridades de sua aplicação é a Relatividade Geral são delineadas. O limite teórico de Karlhede para espaços-tempo de vácuo de tipo Petrov N foi apresentado. Esse limite é estudado na prática usando técnicas espinores e as condições para sua existência são resolvidas sem a introdução de sistemas de coordenadas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we adopt a differential-geometry viewpoint to tackle the problem of learning a distance online. As this problem can be cast into the estimation of a fixed-rank positive semidefinite (PSD) matrix, we develop algorithms that exploits the rich geometry structure of the set of fixed-rank PSD matrices. We propose a method which separately updates the subspace of the matrix and its projection onto that subspace. A proper weighting of the two iterations enables to continuously interpolate between the problem of learning a subspace and learning a distance when the subspace is fixed. © 2009 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two main perspectives have been developed within the Multidisciplinary Design Optimization (MDO) literature for classifying and comparing MDO architectures: a numerical point of view and a formulation/data flow point of view. Although significant work has been done here, these perspectives have not provided much in the way of a priori information or predictive power about architecture performance. In this report, we outline a new perspective, called the geometric perspective, which we believe will be able to provide such predictive power. Using tools from differential geometry, we take several prominent architectures and describe mathematically how each constructs the space through which it moves. We then consider how the architecture moves through the space which it has constructed. Taken together, these investigations show how each architecture relates to the original feasible design manifold, how the architectures relate to each other, and how each architecture deals with the design coupling inherent to the original system. This in turn lays the groundwork for further theoretical comparisons between and analyses of MDO architectures and their behaviour using tools and techniques derived from differential geometry. © 2012 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper provides an introduction to the topic of optimization on manifolds. The approach taken uses the language of differential geometry, however,we choose to emphasise the intuition of the concepts and the structures that are important in generating practical numerical algorithms rather than the technical details of the formulation. There are a number of algorithms that can be applied to solve such problems and we discuss the steepest descent and Newton's method in some detail as well as referencing the more important of the other approaches.There are a wide range of potential applications that we are aware of, and we briefly discuss these applications, as well as explaining one or two in more detail. © 2010 Springer -Verlag Berlin Heidelberg.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is a need for a stronger theoretical understanding of Multidisciplinary Design Optimization (MDO) within the field. Having developed a differential geometry framework in response to this need, we consider how standard optimization algorithms can be modeled using systems of ordinary differential equations (ODEs) while also reviewing optimization algorithms which have been derived from ODE solution methods. We then use some of the framework's tools to show how our resultant systems of ODEs can be analyzed and their behaviour quantitatively evaluated. In doing so, we demonstrate the power and scope of our differential geometry framework, we provide new tools for analyzing MDO systems and their behaviour, and we suggest hitherto neglected optimization methods which may prove particularly useful within the MDO context. Copyright © 2013 by ASME.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Optimization on manifolds is a rapidly developing branch of nonlinear optimization. Its focus is on problems where the smooth geometry of the search space can be leveraged to design effcient numerical algorithms. In particular, optimization on manifolds is well-suited to deal with rank and orthogonality constraints. Such structured constraints appear pervasively in machine learning applications, including low-rank matrix completion, sensor network localization, camera network registration, independent component analysis, metric learning, dimensionality reduction and so on. The Manopt toolbox, available at www.manopt.org, is a user-friendly, documented piece of software dedicated to simplify experimenting with state of the art Riemannian optimization algorithms. By dealing internally with most of the differential geometry, the package aims particularly at lowering the entrance barrier. © 2014 Nicolas Boumal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

水下机械手作为水下机器人通用作业工具得到广泛地应用,目前水下机械手的主要操作方式为主从方式。虽然主从方式具有操作直观,灵活的特点,但难于完成需要精确定位,轨迹控制的水下作用,如海洋石油钻井平台导管架的检查作用。为了扩展水下机器人的作业能力,提高水下作业智能化程度,沈阳自动化所承担国家863课题“水下虚拟遥操作与监控机械手系统”关键技术的研究工作。作者参加了此课题的研究工作,以Schilling水下机械手为研究对象,深入研究机械手的作用功能,对机械手的逆运动学,焊缝空间轨迹规划作了深入的研究,形成本文阐述的主要内容。由于Schilling水下机械手各关节之间的连接参数中存在多个偏距,其运动学逆解不能简单由解析方式给出。机械手进行控制与轨迹规划等操作必须找到一种快速求解的方法。本篇文章得出一种基于信赖域法的机械手运动学逆解算法。由于该算法具有收敛速度快的特点,故可以被应用于在线求解机械手运动学逆解;由于没有直接求解二阶导数,故不存在奇异解的问题。经理论分析和实验证明该方法在解决水下监控机械手在线跟踪水下结构物空间轨迹的技术问题具有较好的效果。作为课题的实际应用背景的导管架焊缝曲面为一复杂的空间曲面。为了实现课题的研究目标,本课题不仅要求解焊缝的轨迹,而且要给出其法线方向。对于这样一个问题,用空间解析几何和微分几何方法是很难求解的,本文给出了一种基于B样条参数曲面及曲面求交的方法,具有速度快,通用性强的优点。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We introduce the notion of flat surfaces of finite type in the 3- sphere, give the algebro-geometric description in terms of spectral curves and polynomial Killing fields, and show that finite type flat surfaces generated by curves on S2 with periodic curvature functions are dense in the space of all flat surfaces generated by curves on S2 with periodic curvature functions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of real hypersurfaces in pseudo-Riemannian complex space forms and para-complex space forms, which are the pseudo-Riemannian generalizations of the complex space forms, is addressed. It is proved that there are no umbilic hypersurfaces, nor real hypersurfaces with parallel shape operator in such spaces. Denoting by J be the complex or para-complex structure of a pseudo-complex or para-complex space form respectively, a non-degenerate hypersurface of such space with unit normal vector field N is said to be Hopf if the tangent vector field JN is a principal direction. It is proved that if a hypersurface is Hopf, then the corresponding principal curvature (the Hopf curvature) is constant. It is also observed that in some cases a Hopf hypersurface must be, locally, a tube over a complex (or para-complex) submanifold, thus generalizing previous results of Cecil, Ryan and Montiel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper tackles the problem of computing smooth, optimal trajectories on the Euclidean group of motions SE(3). The problem is formulated as an optimal control problem where the cost function to be minimized is equal to the integral of the classical curvature squared. This problem is analogous to the elastic problem from differential geometry and thus the resulting rigid body motions will trace elastic curves. An application of the Maximum Principle to this optimal control problem shifts the emphasis to the language of symplectic geometry and to the associated Hamiltonian formalism. This results in a system of first order differential equations that yield coordinate free necessary conditions for optimality for these curves. From these necessary conditions we identify an integrable case and these particular set of curves are solved analytically. These analytic solutions provide interpolating curves between an initial given position and orientation and a desired position and orientation that would be useful in motion planning for systems such as robotic manipulators and autonomous-oriented vehicles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Differential geometry is used to investigate the structure of neural-network-based control systems. The key aspect is relative order—an invariant property of dynamic systems. Finite relative order allows the specification of a minimal architecture for a recurrent network. Any system with finite relative order has a left inverse. It is shown that a recurrent network with finite relative order has a local inverse that is also a recurrent network with the same weights. The results have implications for the use of recurrent networks in the inverse-model-based control of nonlinear systems.