954 resultados para Differential Expression
Resumo:
The expression patterns of the three different peroxisome proliferator-activated receptor (PPAR) isotypes have been determined during rat embryonic development by in situ hybridization. The expression of PPARalpha starts late in development, with increasing levels in organs such as liver, kidney, intestine, and pancreas, in which it will also be present later in adulthood to regulate its specific target genes. PPARalpha is also transiently expressed in the embryonic epidermis and central nervous system. PPARgamma presents a very restricted pattern of expression, being strongly expressed in brown adipose tissue, in which differentiation it has been shown to participate. Like PPARalpha, it is also expressed transiently in the central nervous system. Interestingly, PPARalpha, -beta and -gamma are coexpressed at high levels in brown adipose tissue. Finally, the high and ubiquitous expression of PPARbeta suggests some fundamental role(s) that this receptor might play throughout development.
Resumo:
Objectives: To characterize the modifications of gene expression of adenosine receptors (AR), TRPC channels, HIF-1α and iNOS during the early cardiogenesis in response to chronic hypoxia exposure. Methods: 4-day-old chick embryos were subjected in ovo to 6H, 12H and 24H of hypoxia (10% O2). The mRNA expression was quantified by RT-qPCR. Results: The targeted genes were found to be expressed at mRNA level with a differential expression pattern within the heart. Hypoxia has no significant effect on mRNA expression of ARs, TRPCs channels and iNOS within the heart. By contrast, HIF-1α mRNA expression shows a tendency to be down-regulated by hypoxia. Conclusion: These results suggest that an intrauterine oxygen lack does not significantly affect expression of genes involved in adenosine signaling and in calcium handling by store operated channels (TRPC).
Resumo:
Profiling microRNA (miRNA) expression is of widespread interest given the critical role of miRNAs in many cellular functions. Profiling can be achieved via hybridization-based (microarrays), sequencing-based, or amplification-based (quantitative reverse transcription-PCR, qPCR) technologies. Among these, microarrays face the significant challenge of accurately distinguishing between mature and immature miRNA forms, and different vendors have developed different methods to meet this challenge. Here we measure differential miRNA expression using the Affymetrix, Agilent, and Illumina microarray platforms, as well as qPCR (Applied Biosystems) and ultra high-throughput sequencing (Illumina). We show that the differential expression measurements are more divergent when the three types of microarrays are compared than when the Agilent microarray, qPCR, and sequencing technology measurements are compared, which exhibit a good overall concordance.
Resumo:
Although the importance of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome in health and disease is well appreciated, a precise characterization of NLRP3 expression is yet undetermined. To this purpose, we generated a knock-in mouse in which the Nlrp3 coding sequence was substituted for the GFP (enhanced GFP [egfp]) gene. In this way, the expression of eGFP is driven by the endogenous regulatory elements of the Nlrp3 gene. In this study, we show that eGFP expression indeed mirrors that of NLRP3. Interestingly, splenic neutrophils, macrophages, and, in particular, monocytes and conventional dendritic cells showed robust eGFP fluorescence, whereas lymphoid subsets, eosinophils, and plasmacytoid dendritic cells showed negligible eGFP levels. NLRP3 expression was highly inducible in macrophages, both by MyD88- and Trif-dependent pathways. In vivo, when mice were challenged with diverse inflammatory stimuli, differences in both the number of eGFP-expressing cells and fluorescence intensity were observed in the draining lymph node. Thus, NLRP3 levels at the site of adaptive response initiation are controlled by recruitment of NLRP3-expressing cells and by NLRP3 induction.
Resumo:
Brain spectrin, a membrane-related cytoskeletal protein, exists as two isoforms. Brain spectrin 240/235 is localized preferentially in the perikaryon and axon of neuronal cells and brain spectrin 240/235E is found essentially in the neuronal soma and dendrites and in glia (Riederer et al., 1986, J. Cell Biol., 102, 2088 - 2097). The sensory neurons in dorsal root ganglia, devoid of any dendrites, make a good tool to investigate such differential expression of spectrin isoforms. In this study expression and localization of both brain spectrin isoforms were analysed during early chicken dorsal root ganglia development in vivo and in culture. Both isoforms appeared at embryonic day 6. Brain spectrin 240/235 exhibited a transient increase during embryonic development and was first expressed in ventrolateral neurons. In ganglion cells in situ and in culture this spectrin type showed a somato - axonal distribution pattern. In contrast, brain spectrin 240/235E slightly increased between E6 and E15 and remained practically unchanged. It was localized mainly in smaller neurons of the mediodorsal area as punctate staining in the cytoplasm, was restricted exclusively to the ganglion cell perikarya and was absent from axons both in situ and in culture. This study suggests that brain spectrin 240/235 may contribute towards outgrowth, elongation and maintenance of axonal processes and that brain spectrin 240/235E seems to be exclusively involved in the stabilization of the cytoarchitecture of cell bodies in a selected population of ganglion cells.
Resumo:
The expression of the 240 ConA-binding glycoprotein (240 kDa), a marker of synaptic junctions isolated from the rat cerebellum, was studied by immunocytochemical techniques in forebrain and cerebellum from rat and chicken, and in chick dorsal root ganglia. Parallel studies were carried out either on tissue sections or in dissociated cell cultures. In all cases non neuronal cells were not immunostained. The tissue sections of cerebellum from rat and chick exhibited 240 kDa glycoprotein immunoreactivity, especially in the molecular layer, while the forebrain sections from rat and chick did not show any significant immunostaining. In contrast, in dissociated forebrain cell cultures, all neuronal cells expressed 240 kDa glycoprotein immunoreactivity, while glial cells remained totally unlabelled. In tissue sections of dorsal root ganglion (DRG), sensory neurons expressed the 240 kDa only after the embryonic day (E 10). A large number of small neurons in the dorsomedial part of DRG were immunostained with 240 kDa glycoprotein antiserum, whereas only a small number of neurons in the ventrolateral part of the ganglia displayed 240 kDa immunoreactivity. In dissociated DRG cells cultures (mixed or neuron-enriched DRG cell cultures) all the neuronal perikarya but not their processes were stained. These studies indicate that 240 kDa glycoprotein expression is completely modified in cultures of neurons of CNS or PNS since the antigen becomes synthetized in high amount by all cells independent of synapse formation. This demonstrates that the expression of 240 kDa is controlled by the cell environment.
Resumo:
Glutamate receptors have been often associated with developmental processes. We used immunohistochemical techniques to evaluate the expression of the AMPA-type glutamate receptor (GluR) subunits in the chick optic tectum (TeO). Chick embryos from the 5th through the 20th embryonic day (E5-E20) and one-day-old (P1) chicks were used. The three types of immunoreactivity evaluated (GluR1, GluR2/3, and GluR4) had different temporal and spatial expression patterns in the several layers of the TeO. The GluR1 subunit first appeared as moderate staining on E7 and then increased on E9. The mature GluR1 pattern included intense staining only in layer 5 of the TeO. The GluR2/3 subunits presented low expression on E5, which became intense on E7. The staining for GluR2/3 changed to very intense on E14 in tectal layer 13. Staining of layer 13 neurons is the most prominent feature of GluR immunoreactivity in the adult TeO. The GluR4 subunit generally presented the lowest expression starting on E7, which was similar to the adult pattern. Some instances of transient expression of GluR subunits were observed in specific cell populations from E9 through E20. These results demonstrate a differential expression of the GluR subunits in the embryonic TeO, adding information about their possible functions in the developmental processes of the visual system.
Resumo:
Mast cell progenitors arise in bone marrow and then migrate to peripheral tissues where they mature. It is presumed that integrin receptors are involved in their migration and homing. In the present study, the expression of various integrin subunits was investigated in three systems of adherent and nonadherent mast cells. Mesentery mast cells, freshly isolated bone marrow-derived mast cells (BMMC) and RBL-2H3 cells grown attached to tissue culture flasks are all adherent mast cells and peritoneal mast cells, and cultured BMMC and RBL-2H3 cells grown in suspension represent nonadherent mast cell populations. Pure populations of mast cells were immunomagnetically isolated from bone marrow, mesentery and peritoneal lavage using the mast cell-specific monoclonal antibody AA4. By immunomicroscopy, we could demonstrate that all of these mast cells expressed alpha4, alpha5, alpha6, ß1 and ß7 integrin subunits. The expression of the alpha4 integrin subunit was 25% higher in freshly isolated mesentery mast cells and BMMC. Consistent with the results obtained by immunomicroscopy, mesentery mast cells expressed 65% more mRNA for the alpha4 integrin subunit than peritoneal mast cells. In vitro studies were also conducted using the rat mast cell line RBL-2H3. RBL-2H3 cells grown attached to the tissue culture flasks or as suspension cultures expressed the same integrin subunits identified in bone marrow, mesenteric and peritoneal mast cells ex vivo. Similarly, the expression of alpha4 integrin was higher in adherent cells. Therefore, alpha4 integrins may play a critical role in the anchorage of mast cells to the extracellular matrix in bone marrow and in peripheral tissues.
Resumo:
Ovarian follicle development is primarily regulated by an interplay between the pituitary gonadotrophins, LH and FSH, and ovary-derived steroids. Increasing evidence implicates regulatory roles of transforming growth factor-beta (TGF beta) superfamily members, including inhibins and activins. The aim of this study was to identify the expression of mRNAs encoding key receptors of the inhibin/activin system in ovarian follicles ranging from 4 mm in diameter to the dominant F1 follicle (similar to 40 turn). Ovaries were collected (n=16) from inid-sequence hens maintained on a long-day photoschedule (16h of light:8 h of darkness). All follicles removed were dissected into individual granulosa and thecal layers. RNA was extracted and cDNA synthesized. Real-time quantitative PCR was used to quantify the expression of niRNA encoding betaglycan, activin receptor (ActR) subtypes (type-I, -IIA and -IIB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH); receptor expression data were normalized to GAPDH expression. Detectable levels of ActRI, -IIA and -IIB and the inhibin co-receptor (betaglycan) expression were found in all granulosa and thecal layers analysed. Granulosa ActRI mRNA peaked (P < 0(.)05) in 8-9(.)9 mm follicles, whereas ActRIIA rose significantly from 6-7(.)9 mm to 8-9(.)9 nun, before filling to F3/2; levels then rose sharply (3-fold) to F1 levels. Granulosa betaglycan niRNA expression rose 3-fold from 4-5(.)9 min to 8-9(.)9 mm, before falling 4-fold to F3/2; levels then rose sharply (4-fold) to F1 levels. ActRIIB levels did not vary significantly during follicular development. Thecal ActRI mRNA expression was similar from 4-7(.)9 mm then decreased significantly to a nadir at the F4 position, before increasing 2-fold to the F1 (P < 0(.)05). Although thecal ActRIIB and -IIA expression did not vary significantly from 4 nim to F3, ActRIIB expression increased significantly (2-fold) from F3 to F1 and ActIIA, increased 22-fold from F2 to F1 (P < 0(.)05). Thecal betaglycan fell to a nadir at F6 after follicle selection; levels then increased significantly to F2, before filling similar to 50% in the F I. In all follicles studied expression of betaglycan and ActRI (granulosa: 1-0(.)65, P < 0-001, n=144/group; theca: r=0(.)49, P < 0-001, n=144/group) was well correlated. No significant correlations were identified between betaglycan and ActRIIA or -IIB. Considering all follicles analysed, granulosa mRNA expression of betaglycan, ActRI ActRIIA and ActRIIB were all significantly lower than in corresponding thecal tissue (betaglycan, 11(.)4-fold; ActRIIB, 5(.)1-fold; ActR(.) 3-8-fold: ActRIIA, 2(.)8-fold). The co-localization of type-I and -II activin receptors and betaglycan on granulosa and thecal cells are consistent with a local auto/paracrine role of inhibins and activins in modulating ovarian follicle development, selection and progression in the domestic fowl.
Resumo:
Ovarian follicle development is primarily regulated by an interplay between the pituitary gonadotrophins, LH and FSH, and ovary-derived steroids. Increasing evidence implicates regulatory roles of transforming growth factor-beta (TGF beta) superfamily members, including inhibins and activins. The aim of this study was to identify the expression of mRNAs encoding key receptors of the inhibin/activin system in ovarian follicles ranging from 4 mm in diameter to the dominant F1 follicle (similar to 40 turn). Ovaries were collected (n=16) from inid-sequence hens maintained on a long-day photoschedule (16h of light:8 h of darkness). All follicles removed were dissected into individual granulosa and thecal layers. RNA was extracted and cDNA synthesized. Real-time quantitative PCR was used to quantify the expression of niRNA encoding betaglycan, activin receptor (ActR) subtypes (type-I, -IIA and -IIB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH); receptor expression data were normalized to GAPDH expression. Detectable levels of ActRI, -IIA and -IIB and the inhibin co-receptor (betaglycan) expression were found in all granulosa and thecal layers analysed. Granulosa ActRI mRNA peaked (P < 0(.)05) in 8-9(.)9 mm follicles, whereas ActRIIA rose significantly from 6-7(.)9 mm to 8-9(.)9 nun, before filling to F3/2; levels then rose sharply (3-fold) to F1 levels. Granulosa betaglycan niRNA expression rose 3-fold from 4-5(.)9 min to 8-9(.)9 mm, before falling 4-fold to F3/2; levels then rose sharply (4-fold) to F1 levels. ActRIIB levels did not vary significantly during follicular development. Thecal ActRI mRNA expression was similar from 4-7(.)9 mm then decreased significantly to a nadir at the F4 position, before increasing 2-fold to the F1 (P < 0(.)05). Although thecal ActRIIB and -IIA expression did not vary significantly from 4 nim to F3, ActRIIB expression increased significantly (2-fold) from F3 to F1 and ActIIA, increased 22-fold from F2 to F1 (P < 0(.)05). Thecal betaglycan fell to a nadir at F6 after follicle selection; levels then increased significantly to F2, before filling similar to 50% in the F I. In all follicles studied expression of betaglycan and ActRI (granulosa: 1-0(.)65, P < 0-001, n=144/group; theca: r=0(.)49, P < 0-001, n=144/group) was well correlated. No significant correlations were identified between betaglycan and ActRIIA or -IIB. Considering all follicles analysed, granulosa mRNA expression of betaglycan, ActRI ActRIIA and ActRIIB were all significantly lower than in corresponding thecal tissue (betaglycan, 11(.)4-fold; ActRIIB, 5(.)1-fold; ActR(.) 3-8-fold: ActRIIA, 2(.)8-fold). The co-localization of type-I and -II activin receptors and betaglycan on granulosa and thecal cells are consistent with a local auto/paracrine role of inhibins and activins in modulating ovarian follicle development, selection and progression in the domestic fowl.
Resumo:
Gap junction (GJ) channels couple adjacent cells, allowing transfer of second messengers, ions, and molecules up to 1 kDa. These channels are composed by a multigene family of integral membrane proteins called connexins (Cx). In the retina, besides being essential circuit element in the visual processing, GJ channels also play important roles during its development. Herein, we analyzed Cx43, Cx45, Cx50, and Cx56 expression during chick retinal histogenesis. Cx exhibited distinct expression profiles during retinal development, except for Cx56, whose expression was not detected. Cx43 immunolabeling was observed at early development, in the transition of ventricular zone and pigmented epithelium. Later, Cx43 was seen in the outer plexiform and ganglion cell layers, and afterwards also in the inner plexiform layer. We observed remarkable changes in the phosphorylation status of this protein, which indicated modifications in functional properties of this Cx during retinal histogenesis. By contrast, Cx45 showed stable gene expression levels throughout development and ubiquitous immunoreactivity in progenitor cells. From later embryonic development, Cx45 was mainly observed in the inner retina, and it was expressed by glial cells and neurons. In turn, Cx50 was virtually absent in the chick retina at initial embryonic phases. Combination of PCR, immunohistochemistry and Western blot indicated that this Cx was present in differentiated cells, arising in parallel with the formation of the visual circuitry. Characterization of Cx expression in the developing chick retina indicated particular roles for these proteins and revealed similarities and differences when compared to other species. (C) 2008 Wiley Periodicals, Inc.
Resumo:
Background Chronic myeloproliferative disorders (MPDs) are clonal haematopoietic stem cell malignancies characterised by an accumulation of mature myeloid cells in bone marrow and peripheral blood. Deregulation of the apoptotic machinery may be associated with MPD physiopathology. Aims To evaluate expression of death receptors` family members, mononuclear cell apoptosis resistance, and JAK2 allele burden. Subjects and Methods Bone marrow haematopoietic progenitor CD34 cells were separated using the Ficoll-hypaque protocol followed by the Miltenyi CD34 isolation kit, and peripheral blood leukocytes were separated by the Haes-Steril method. Total RNA was extracted by the Trizol method, the High Capacity Kit was used to synthesise cDNA, and real-time PCR was performed using SybrGreen in ABIPrism 7500 equipment. The results of gene expression quantification are given as 2(-Delta Delta Ct). The JAK2 V617F mutation was detected by real-time allelic discrimination PCR assay. Peripheral blood mononuclear cells (PBMCs) were isolated by the Ficoll-hypaque protocol and cultured in the presence of apoptosis inducers. Results In CD34 cells, there was mRNA overexpression for fas, faim and c-flip in polycythaemia vera (PV), essential thrombocythaemia (ET) and primary myelofibrosis (PMF), as well as fasl in PMF, and dr4 levels were increased in ET. In leukocytes, fas, c-flip and trail levels were increased in PV, and dr5 expression was decreased in ET. There was an association between dr5 and fasl expression and JAK2V617F mutation. PBMCs from patients with PV, ET or PMF showed resistance to apoptosis inducers. Conclusions The results indicate deregulation of apoptosis gene expression, which may be associated with MPD pathogenesis leading to accumulation of myeloid cells in MPDs.
Resumo:
Monocytes/macrophages and lymphocytes have a key role in the pathogenesis of atherosclerosis through the production of inflammatory and anti-inflammatory cytokines. We evaluated mRNA expression and protein production of CCL2, CXCL8, CXCL9, CXCL10, IFN-gamma and IL-10 in vitro as well as the expression of the CCR2 and CXCR3 receptors in peripheral blood mononuclear cells (PBMCs) of patients with coronary artery disease (CAD) and healthy controls in the presence or absence of oxidized LDL (oxLDL). Patients with CAD showed higher constitutive expression of CCL2, CXCL8, CXCL9, CXCL10 and IFN-gamma mRNA and, after stimulation with oxLDL, higher expression of CCL2 and CXCL8 mRNA than the control group. We also detected higher levels of CCL2 and CXCL8 in supernatants of oxLDL-stimulated PBMCs from CAD patients than in corresponding supernatants from controls. Patients with CAD had a higher percentage of constitutive CCR2(+) and CXCR3(+) cells after stimulation with oxLDL. Among CAD patients, the main differences between the stable (SA) and unstable angina (UA) groups were lower IL-10 mRNA production in the latter group. Altogether, our data suggest that PBMCs from CAD patients are able to produce higher concentrations of chemokines and cytokines involved in the regulation of monocyte and lymphocyte migration and retention in atherosclerotic lesions. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Lymphotoxin alpha (LTA) is a member of the TNF cytokine superfamily, produced principally by lymphocytes. It plays an important role in immune and inflammatory responses. Many TNF superfamily members have functionally important isoforms generated by alternative splicing but alternative splicing of LTA has never been studied. The known LTA protein is encoded by a transcript containing four exons. Here we report seven new LTA splice variants, three of them evolutionary conserved. We demonstrate their presence in cytoplasmic RNA suggesting that they could be translated into new LTA isoforms. We observed that their expression is differentially regulated upon activation of peripheral blood mononuclear cells and lymphocyte subpopulations (CD4+, CD8+, and CD19+). Our data suggest that the new LTA splice variants might play a role in the regulation of the immune response. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)