982 resultados para Different shapes
Resumo:
Mechanical resonators are the most basic and ubiquitous physical systems known. In on-chip form, they are used to process high frequency signals in every cell phone, television, and laptop. They have also been in the last few decades in different shapes and forms, a critical part of progress in quantum information sciences with kilogram-scale mirrors for gravitational wave detection measuring motion at its quantum limits, and the motion of single ions being used to link qubits for quantum computation.
Optomechanics is a field primarily concerned with coupling light to the motion of mechanical structures. This thesis contains descriptions of recent work with mechanical systems in the megahertz to gigahertz frequency range, formed by nanofabricating novel photonic/phononic structures on a silicon chip. These structures are designed to have both optical and mechanical resonances, and laser light is used to address and manipulate their motional degrees of freedom through radiation pressure forces. We laser cool these mechanical resonators to their ground states, and observe for the first time the quantum zero-point motion of a nanomechanical resonator. Conversely, we show that engineered mechanical resonances drastically modify the optical response of our structures, creating large effective optical nonlinearities not present in bulk silicon. We experimentally demonstrate aspects of these nonlinearities by proposing and observing ``electromagnetically induced transparency'' and light slowed down to 6 m/s, as well as wavelength conversion, and generation of nonclassical optical radiation. Finally, the application of optomechanics to longstanding problems in quantum and classical communications are proposed and investigated.
Resumo:
[ES]En la actualidad el proceso de mecanizado mediante electroerosión por hilo (WEDM) posee varias problemáticas a la hora de la ejecución de los cortes para producir diferentes formas, ya sean esquinas, radios de redondeo o de acuerdo y por último la realización de círculos. Es por ello por lo que se elabora el presente trabajo cuya finalidad es llegar a caracterizar los errores cometidos en el corte de desbaste de probetas con trayectorias circulares y tecnología estándar. De esta manera se podrá cuantificar las desviaciones que se producen en las piezas en función del espesor y de sus radios. Toda la información obtenida en el trabajo permitirá una futura actuación en diversos parámetros máquina, elaborando nuevas tecnologías o bien poder mitigarlos realizando correcciones geométricas, ajustando sus tolerancias.
Resumo:
When a thin rectangular plate is restrained on the two long edges and free on the remaining edges, the equivalent stiffness of the restraining joints can be identified by the order of the natural frequencies obtained using the free response of the plate at a single location. This work presents a method to identify the equivalent stiffness of the restraining joints, being represented as simply supporting the plate but elastically restraining it in rotation. An integral transform is used to map the autospectrum of the free response from the frequency domain to the stiffness domain in order to identify the equivalent torsional stiffness of the restrained edges of the plate and also the order of natural frequencies. The kernel of the integral transform is built interpolating data from a finite element model of the plate. The method introduced in this paper can also be applied to plates or shells with different shapes and boundary conditions. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
By vertical sedimentation and oblique titration, silica microspheres were grown in different shapes of concave microzones that were etched on a (100) p-silicon substrate. Through scanning electron microscope observation and optical reflective spectra measurement, sedimentation of microspheres in those microzones was compared. An index was introduced to judge the efficiency of sedimentation. The comparison demonstrates that regular hexagons and triangles facilitate the growth of photonic crystals the most. (c) 2006 Optical Society of America
Resumo:
In the framework of effective mass envelope function theory, the electronic structures of GaAs/AlxGa1-xAs quantum double rings(QDRs) are studied. Our model can be used to calculate the electronic structures of quantum wells, wires, dots, and the single ring. In calculations, the effects due to the different effective masses of electrons and holes in GaAs and AlxGa1-xAs and the valence band mixing are considered. The energy levels of electrons and holes are calculated for different shapes of QDRs. The calculated results are useful in designing and fabricating the interrelated photoelectric devices. The single electron states presented here are useful for the study of the electron correlations and the effects of magnetic fields in QDRs.
Resumo:
By vertical sedimentation, silica micro-spheres were grown in different shapes of concave micro-zones which were etched on a (100) p-silicon substrate. The following were found: this method can effectively raise the quality of films by avoiding cracks; the geometry of the micro-zones affects the sediment of the film; regular hexagons and triangles best facilitate the growth of photonic crystals. This method is practical for its ability to fabricate self-assembly photonic crystals in previously designed small areas.
Resumo:
In the framework of effective-mass envelope function theory, the valence energy subbands and optical transitions of the InAs/GaAs quantum ring are calculated by using a four-band valence band model. Our model can be used to calculate the hole states of quantum wells, quantum wires, and quantum dots. The effect of finite offset and valence band mixing are taken into account. The energy levels of the hole are calculated in the different shapes of rings. Our calculations show that the effect of the difference between effective masses of holes in different materials on the valence subband structures is significant. Our theoretical results are consistent with the conclusion of the recent experimental measurements and should be useful for researching and making low-dimensional semiconductor optoelectronic devices. (C) 2002 American Institute of Physics.
Resumo:
In the framework of effective mass envelope function theory, the electronic states of the InAs/GaAs quantum ring are studied. Our model can be used to calculate the electronic states of quantum wells, quantum wires, and quantum dots. In calculations, the effects due to the different effective masses of electrons in rings and out rings are included. The energy levels of the electron are calculated in the different shapes of rings. The results indicate that the inner radius of rings sensitively changes the electronic states. The energy levels of the electron are not sensitively dependent on the outer radius for large rings. If decreasing the inner and outer radii simultaneously, one may increase the energy spacing between energy levels and keep the ground state energy level unchanged. If changing one of two radii (inner or outer radius), the ground state energy level and the energy spacing will change simultaneously. These results are useful for designing and fabricating the double colors detector by intraband and interband translations. The single electron states are useful for studying the electron correlations and the effects of magnetic fields in quantum rings. Our calculated results are consistent with the recent experimental data of nanoscopic semiconductor rings. (C) 2001 American Institute of Physics.
Resumo:
A simple one-pot method is developed to prepare size-and shape-controlled copper(I) sulfide (Cu2S) nanocrystals by thermolysis of a mixed solution of copper acetylacetonate, dodecanethiol and oleylamine at a relatively high temperature. The crystal structure, chemical composition and morphology of the as-obtained products are characterized by powder x-ray diffraction (PXRD), x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The morphology and size of the Cu2S nanocrystals can be easily controlled by adjusting the reaction parameters. The Cu2S nanocrystals evolve from spherical to disk-like with increasing reaction temperature. The spherical Cu2S nanocrystals have a high tendency to self-assemble into close-packed superlattice structures. The shape of the Cu2S nanodisks changes from cylinder to hexagonal prism with prolonged reaction time, accompanied by the diameter and thickness increasing. More interestingly, the nanodisks are inclined to self-assemble into face-to-face stacking chains with different lengths and orientations. This one-pot approach may extend to synthesis of other metal sulfide nanocrystals with different shapes and sizes.
Resumo:
Rhombohedral-calcite and hexagonal-vaterite types of LuBO:Eu3+ microparticles with various complex self-assembled 3D architectures have been prepared selectively by an efficient surfactant- and template-free hydrothermal process for the first time. X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectrometry, transmission electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, photoluminescence, and cathodoluminescence spectra as well as kinetic decays were used to characterize the samples.
Resumo:
Three-dimensional flowerlike Lu2O3 and Lu2O3:Ln(3+) (Ln = Eu, Th, Dy, Pr, Sm, Er, Ho, Tm) microarchitectures have been successfully synthesized via ethylene glycol (EG)-mediated hydrothermal method followed by a subsequent heat treatment process. X-ray diffraction, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectra, thermogravimetric and differential thermal analysis, elemental analysis, inductively coupled plasma atomic absorption spectrometric analysis, ion chromatogram analysis, X-ray photoelectron spectra, scanning electron microscopy, transmission electron microscopy, photoluminescence spectra as well kinetic decays, and cathodoluminescence spectra were used to characterize the samples. Hydrothermal temperature, EG, and CH3COONa play critical roles in the formation of the lutetium oxide precursor microflowers. The reaction mechanism and the self-assembly evolution process have been proposed. The as-formed lutetium oxide precursor could transform to Lu2O3 With their original flowerlike morphology and slight shrinkage in the size after postannealing process.
Resumo:
Gas bubble dynamic template, a new green and promising template, can be used to prepare nanostructured materials with different shapes from electrochemical deposition processes. Different morphological platinum nanomaterials have been synthesized by the replacement reaction of the deposited copper nanomaterials which were obtained under negative potential along with H-2 evolution (dynamic template) at a glassy carbon electrode. Scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and electrochemical methods were adopted to characterize their structures and properties. The nanomaterials platinum exhibited excellent catalytic activity toward oxygen reduction. The results demonstrated that the strategy is a simple, cost-effective, and potent method to prepare platinum nanomaterials.
Resumo:
Macromolecule-protected sub-micrometer polyhedral gold nanocrystals have been facilely prepared by heating an aqueous solution containing poly (N-vinyl-2-pyrrolidone) (PVP) and HAuCl4 without adding other reducing agents. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), ultraviolet-visible-near-infrared spectroscopy (UV-vis-NIR), and x-ray diffraction (XRD) were employed to characterize the obtained polyhedral gold nanocrystals. It is found that the 10:1 molar ratio of PVP to gold is a key factor for obtaining quasi-monodisperse polyhedral gold nanocrystals. Furthermore, the application of polyhedral gold nanocrystals in surface-enhanced Raman scattering (SERS) was investigated by using 4-aminothiophenol (4-ATP) as a probe molecule. The results indicated that the sub-micrometer polyhedral gold nanocrystals modified on the ITO substrate exhibited higher SERS activity compared to the traditional gold nanoparticle modified film. The enhancement factor (EF) on polyhedral gold nanocrystals was about six times larger than that obtained on aggregated gold nanoparticles (similar to 25 nm).
Resumo:
We describe herein the preparation of silver nanoparticles (AgNPs) using nucleobase adenine as protecting agent through the in situ chemical reduction of AgNO3 with NaBH4 in an aqueous medium at room temperature. As-prepared AgNPs were characterized by UV-visible spectra, transmission electron microscopy and x-ray photoelectron spectroscopy. All these data confirmed the formation of AgNPs. On the basis of electrostatic interactions between as-prepared AgNPs and anionic polyelectrolyte poly(sodium 4-styrenesulfonate) (PSS), we successfully fabricated (PSS/AgNP)n (n = 0-9) multilayers on a 3-mercaptopropyltrimethoxysilane/AgNP functionalized indium tin oxide (ITO) substrate via the layer-by-layer self-assembly technique and characterized as-formed multilayers with UV-visible spectra. Furthermore, these ITO substrates coated with multilayers of different thickness were investigated as surface-enhanced Raman scattering (SERS)-active substrates using p-aminothiophenol as a probe molecule, implying that these multilayers substrates may be promising for a new type of SERS-active substrate.
Resumo:
Silver nanoplates with controlled size are synthesized by seed-mediated growth approach in the presence of citrate. These nanoplates are single crystal with a mean size of 25-1073 nm and thickness of ca. 10-22 nm. The optical in-plane dipole plasmon resonance bands of these plates can be tuned from 458 to 2400 nm. Control experiments have been explored for a more thorough understanding of the growth mechanism. It was found that the additional citrate ions in the growth solution were the key to controlling the aspect ratio of silver nanoplates. Similar to the surfactants or polymers in the solution, citrate ions could be likewise dynamically adsorbed on the growing silver nanoparticles and promote the two-dimensional growth of silver nanoparticles under certain conditions. Small silver seeds were also found to play an important role in the formation of large thin silver nanoplates, although the structure of them was not clear yet and needed further investigations.