821 resultados para Diastolic dysfunction
Resumo:
BACKGROUND: Heart failure with preserved ejection fraction (HFPEF) is a major health problem associated with myocardial leukocyte infiltration, inflammation, and fibrosis. Monocyte and macrophage subsets play a role in HFPEF but have not been studied. We analyzed peripheral blood monocyte phenotype and plasma markers of monocyte activation in patients with HFPEF, asymptomatic LV diastolic dysfunction (aLVDD), and asymptomatic hypertension (aHTN).
METHODS AND RESULTS: Peripheral blood was collected from 23 aHTN, 30 aLVDD, and 30 HFPEF patients. Peripheral cytokines of classic/pro-inflammatory (tumor necrosis factor alpha, interleukin (IL) 12, IL-6, monocyte chemoattractant protein 1, C-X-C motif chemokine 10) and alternative/anti-inflammatory monocytes (chemokine-C-C motif ligand (CCL) 17, CCL-18, soluble CD163) were increased in aLVDD and HFPEF. Peripheral blood mononuclear cells and monocytes were purified and surface-stained for CD14, CD16, CD163, and CD206. Peripheral monocyte percentage was increased in aLVDD and HFPEF and correlated with echocardiographic LVDD indices. Classic/pro-inflammatory monocyte numbers were increased in aLVDD and HFPEF, and alternative/anti-inflammatory monocyte numbers were increased in HFPEF. CD163 M2-macrophage receptor was reduced in HFPEF. Culture of healthy donor monocytes (n = 3) with HFPEF patient-derived sera (n = 6) promoted M2 macrophage features as evidenced by altered morphology and genes (CD206, IL-10).
CONCLUSIONS: Increased peripheral inflammation, monocytosis, and monocyte differentiation to anti-inflammatory/profibrotic M2 macrophages likely associate with HFPEF and its precedent asymptomatic LVDD phase.
Resumo:
AIMS: Hypertension is one of the main drivers of the heart failure (HF) epidemic. The aims of this study were to profile fibro-inflammatory biomarkers across stages of the hypertensive heart disease (HHD) spectrum and to examine whether particular biochemical profiles in asymptomatic patients identify a higher risk of evolution to HF.
METHODS AND RESULTS: This was a cross-sectional observational study involving a population of 275 stable hypertensive patients divided into two different cohorts: Group 1, asymptomatic hypertension (AH) (n= 94); Group 2, HF with preserved ejection fraction (n= 181). Asymptomatic hypertension patients were further subdivided according to left atrial volume index ≥34 mL/m(2) (n= 30) and <34 mL/m(2) (n= 64). Study assays involved inflammatory markers [interleukin 6 (IL6), interleukin 8 (IL8), monocyte chemoattractant protein 1 (MCP1), and tumour necrosis factor α], collagen 1 and 3 metabolic markers [carboxy-terminal propeptide of collagen 1, amino-terminal propeptide of collagen 1, amino-terminal propeptide of collagen 3 (PIIINP), and carboxy-terminal telopeptide of collagen 1 (CITP)], extra-cellular matrix turnover markers [matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 9 (MMP9), and tissue inhibitor of metalloproteinase 1 (TIMP1)], and the brain natriuretic peptide. Data were adjusted for age, sex, systolic blood pressure, and creatinine. Heart failure with preserved ejection fraction was associated with an increased inflammatory signal (IL6, IL8, and MCP1), an increased fibrotic signal (PIIINP and CITP), and an increased matrix turnover signal (MMP2 and MMP9). Alterations in MMP and TIMP enzymes were found to be significant indicators of greater degrees of asymptomatic left ventricular diastolic dysfunction.
CONCLUSION: These data define varying fibro-inflammatory profiles throughout different stages of HHD. In particular, the observations on MMP9 and TIMP1 raise the possibility of earlier detection of those at risk of evolution to HF which may help focus effective preventative strategies.
Resumo:
OBJECTIVES: This study was designed to evaluate the impact of eplerenone on collagen turnover in preserved systolic function heart failure (HFPSF).
BACKGROUND: Despite growing interest in abnormal collagen metabolism as a feature of HFPSF with diastolic dysfunction, the natural history of markers of collagen turnover and the impact of selective aldosterone antagonism on this natural history remains unknown.
METHODS: We evaluated 44 patients with HFPSF, randomly assigned to control (n = 20) or eplerenone 25 mg daily (n = 24) for 6 months, increased to 50 mg daily from 6 to 12 months. Serum markers of collagen turnover and inflammation were analyzed at baseline and at 6 and 12 months and included pro-collagen type-I and -III aminoterminal peptides, matrix metalloproteinase type-2, interleukin-6 and -8, and tumor necrosis factor-alpha. Doppler-echocardiographic assessment of diastolic filling indexes and tissue Doppler analyses were also obtained.
RESULTS: The mean age of the patients was 80 +/- 7.8 years; 46% were male; 64% were receiving an angiotensin-converting enzyme inhibitor, 34% an angiotensin-II receptor blocker, and 68% were receiving beta-blocker therapy. Pro-collagen type-III and -I aminoterminal peptides, matrix metalloproteinase type-2, interleukin-6 and -8, and tumor necrosis factor-alpha increased with time in the control group. Eplerenone treatment had no significant impact on any biomarker at 6 months but attenuated the increase in pro-collagen type-III aminoterminal peptide at 12 months (p = 0.006). Eplerenone therapy was associated with modest effects on diastolic function without any impact on clinical variables or brain natriuretic peptide.
CONCLUSIONS: This study demonstrates progressive increases in markers of collagen turnover and inflammation in HFPSF with diastolic dysfunction. Despite high background utilization of renin-angiotensin-aldosterone modulators, eplerenone therapy prevents a progressive increase in pro-collagen type-III aminoterminal peptide and may have a role in management of this disease. (The Effect of Eplerenone and Atorvastatin on Markers of Collagen Turnover in Diastolic Heart Failure; NCT00505336).
Resumo:
Left ventricular diastolic dysfunction leads to heart failure with preserved ejection fraction, an increasingly prevalent condition largely driven by modern day lifestyle risk factors. As heart failure with preserved ejection fraction accounts for almost one-half of all patients with heart failure, appropriate nonhuman animal models are required to improve our understanding of the pathophysiology of this syndrome and to provide a platform for preclinical investigation of potential therapies. Hypertension, obesity, and diabetes are major risk factors for diastolic dysfunction and heart failure with preserved ejection fraction. This review focuses on murine models reflecting this disease continuum driven by the aforementioned common risk factors. We describe various models of diastolic dysfunction and highlight models of heart failure with preserved ejection fraction reported in the literature. Strengths and weaknesses of the different models are discussed to provide an aid to translational scientists when selecting an appropriate model. We also bring attention to the fact that heart failure with preserved ejection fraction is difficult to diagnose in animal models and that, therefore, there is a paucity of well described animal models of this increasingly important condition.
Resumo:
Background - Specific treatments targeting the pathophysiology of hypertensive heart disease are lacking. As aldosterone has been implicated in the genesis of myocardial fibrosis, hypertrophy, and dysfunction, we sought to determine the effects of aldosterone antagonism on myocardial function in hypertensive patients with suspected diastolic heart failure by using sensitive quantitative echocardiographic techniques in a randomized, double-blinded, placebo-controlled study. Methods and Results - Thirty medically treated ambulatory hypertensive patients (19 women, age 62 +/- 6 years) with exertional dyspnea, ejection fraction >50%, and diastolic dysfunction (E/A 250m/sec) and without ischemia were randomized to spironolactone 25 mg/d or placebo for 6 months. Patients were overweight (31 +/- 5 kg/m(2)) with reduced treadmill exercise capacity (6.7 +/- 2.1 METS). Long-axis strain rate (SR), peak systolic strain, and cyclic variation of integrated backscatter (CVIB) were averaged from 6 walls in 3 standard apical views. Mean 24-hour ambulatory blood pressure at baseline (133 +/- 17/80 +/- 7mm Hg) did not change in either group. Values for SR, peak systolic strain, and CVIB were similar between groups at baseline and remained unchanged with placebo. Spironolactone therapy was associated with increases in SR (baseline: -1.57 +/- 0.46 s(-1) versus 6-months: -1.91 +/- 0.36 s(-1), P < 0.01), peak systolic strain (-20.3 &PLUSMN; 5.0% versus -26.9 &PLUSMN; 4.3%, P < 0.001), and CVIB (7.4 +/- 1.7dB versus 8.6 +/- 1.7 dB, P = 0.08). Each parameter was significantly greater in the spironolactone group compared with placebo at 6 months (P = 0.05, P = 0.02, and P = 0.02, respectively), and the increases remained significant after adjusting for baseline differences. The increase in strain was independent of changes in blood pressure with intervention. The spironolactone group also exhibited reduction in posterior wall thickness (P = 0.04) and a trend to reduced left atrial area (P = 0.09). Conclusions - Aldosterone antagonism improves myocardial function in hypertensive heart disease.
Resumo:
We evaluated the development of arterial hypertension, cardiac function, and collagen deposition, as well as the level of components of the renin-angiotensin system in the heart of transgenic rats that overexpress an angiotensin (Ang)-(1-7)-producing fusion protein, TGR(A1-7)3292 (TG), which induces a lifetime increase in circulating levels of this peptide. After 30 days of the induction of the deoxycorticosterone acetate (DOCA)-salt hypertension model, DOCA-TG rats were hypertensive but presented a lower systolic arterial pressure in comparison with DOCA-Sprague-Dawley (SD) rats. In contrast to DOCA-SD rats that presented left ventricle (LV) hypertrophy and diastolic dysfunction, DOCA-TG rats did not develop cardiac hypertrophy or changes in ventricular function. In addition, DOCA-TG rats showed attenuation in mRNA expression for collagen type I and III compared with the increased levels of DOCA-SD rats. Ang II plasma and LV levels were reduced in SD and TG hypertensive rats in comparison with normotensive animals. DOCA-TG rats presented a reduction in plasma Ang-(1-7) levels; however, there was a great increase in Ang-(1-7) (approximate to 3-fold) accompanied by a decrease in mRNA expression of both angiotensin-converting enzyme and angiotensin-converting enzyme 2 in the LV. The mRNA expression of Mas and Ang II type 1 receptors in the LV was not significantly changed in DOCA-SD or DOCA-TG rats. This study showed that TG rats with increased circulating levels of Ang-(1-7) are protected against cardiac dysfunction and fibrosis and also present an attenuated increase in blood pressure after DOCA-salt hypertension. In addition, DOCA-TG rats showed an important local increase in Ang-(1-7) levels in the LV, which might have contributed to the attenuation of cardiac dysfunction and prefibrotic lesions. (Hypertension. 2010;55:889-896.)
Resumo:
In hypertension, left ventricular (LV) hypertrophy develops as an adaptive mechanism to compensate for increased afterload and thus preserve systolic function. Associated structural changes such as microvascular disease might potentially interfere with this mechanism, producing pathological hypertrophy. A poorer outcome is expected to occur when LV function is put in jeopardy by impaired coronary reserve. The aim of this study was to evaluate the role of coronary reserve in the long-term outcome of patients with hypertensive dilated cardiomyopathy. Between 1996 and 2000, 45 patients, 30 of them male, with 52 +/- 11 years and LV fractional shortening <30% were enrolled and followed until 2006. Coronary flow velocity reserve was assessed by transesophageal Doppler of the left anterior descending coronary artery. Sixteen patients showed >= 10% improvement in LV fractional shortening after 17 +/- 6 months. Coronary reserve was the only variable independently related to this improvement. Total mortality was 38% in 10 years. The Cox model identified coronary reserve (hazard ratio = 0.814; 95% CI = 0.72-0.92), LV mass, low diastolic blood pressure, and male gender as independent predictors of mortality. In hypertensive dilated cardiomyopathy, coronary reserve impairment adversely affects survival, possibly by interfering with the improvement of LV dysfunction. J Am Soc Hypertens 2010;4(1):14-21. (C) 2010 American Society of Hypertension. All rights reserved.
Resumo:
The aim this study was to evaluate systolic and diastolic function in volume overload induced myocardial hypertrophy in rats.Volume overload myocardial hypertrophy was induced in thirteen male Wistar rats by creating infrarenal arteriovenous fistula (AVF). The results were compared with a SHAM operated group (n = 11). Eight weeks after surgery, tail-cuff blood pressure was recorded, then rats were sacrificed for isolated heart studies using Langendorffs preparation.AVF rats presented increased left and right ventricular weights, compared to controls. The increased normalized ventricular volume (V0/LVW, 0.141 +/- 0.035 mL/g vs. 0.267 +/- 0.071 mL/g, P < 0.001) in the AVF group indicated chamber dilation. Myocardial hydroxyproline concentration remained unchanged. There was a significant decrease in +dP/dt (3318 +/- 352 mm Hg s(-1) vs. 2769 +/- 399 mm Hg s(-1); P=0,002), end-systolic pressure-volume relation (246 +/- 56 mm Hg mL(-1) vs. 114 +/- 63 mm Hg mL(-1);, P < 0,001), and -dP/dt (1746 +/- 240 min Hg s(-1) vs. 1361 +/- 217 mm Hg s(-1), P < 0.001) in the AVF group, which presented increased ventricular compliance (Delta V-25: SHAM=0.172 +/- 0.05 mL vs. AVF=0.321 +/- 0.072 mL, P < 0.001) with preserved myocardial passive stiffness (Strain(25): SHAM=13.5 +/- 3.0% vs. AVF=12.3 +/- 1.9%, P > 0.05).We conclude that volume-overload induced hypertrophy causes myocardial systolic and diastolic dysfunction with increased ventricular compliance. These haemodynamic features help to explain the long-term compensatory phase of chronic volume overload before transition to overt congestive heart failure. (c) 2006 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.
Resumo:
Background: the associations between autonomic function and biventricular function in patients with the indeterminate form of Chagas disease remains to be elucidated.Methods: In 42 asymptornatic patients and 19 healthy volunteers, the autonomic function was assessed by time domain indices of heart rate variability (HRV), analyzed for 24 h; the right ventricular function was assessed by fraction area change, right ventricle shortening, and systolic excursion of the tricuspid valve; and the left ventricular function was assessed by ejection fraction and transmittal flow velocities. Data were expressed as mean SD or medians (including the lower quartile and upper quartile). Groups were compared by Student's t or Mann-Whitney U test. Autonomic and ventricular function were correlated by Pearson's or Spearman's correlation coefficient. The level of significance was 5%.Results: Right and left ventricular systolic function indexes were comparable between groups. Transmittal flow velocities were decreased in the Chagas disease group (p < 0.05). The patients presented impaired HRV as indicated by the values of SDNN-day (80 (64-99) ms vs. 98 (78-127) ms; p = 0.045), SDNNI-24 It (54 (43-71) vs. 65 (54-105) ms; p = 0.027), SDNNI-day (49 (42-64) vs. 67 (48-76) ms; p = 0.045), pNN50-day (2.2 (0.7-5)% vs. 10 (3-11)%; p = 0.033); and pNN50-24 It (3 (1-7)% vs. 12 (8-19)%; p = 0.013). There were no correlations between the left ventricular diastolic indices and autonomic dysfunctional indices (p > 0.05).Conclusion: Patients with the indeterminate form of Chagas disease have both dysautonomia, and left ventricular diastolic dysfunction. However, the right ventricular function is preserved. Importantly, ventricular diastolic dysfunction and dysautonomia. are independent phenomena. (c) 2005 Elsevier B.V.. All rights reserved.
Resumo:
Cardiac structures, function, and myocardial contractility are affected by food restriction (FR). There are few experiments associating undernutrition with hypertension. The aim of the present study was to analyze the effects of FR on the cardiac response to hypertension in a genetic model of hypertension, the spontaneously hypertensive rat (SHR). Five-month-old SHR were fed a control or a calorie-restricted diet for 90 days. Global left ventricle (LV) systolic function was evaluated in vivo by transthoracic echocardiogram and myocardial contractility and diastolic function were assessed in vitro in an isovolumetrically beating isolated heart (Langendorff preparation). FR reduced LV systolic function (control (mean ± SD): 58.9 ± 8.2; FR: 50.8 ± 4.8%, N = 14, P < 0.05). Myocardial contractility was preserved when assessed by the +dP/dt (control: 3493 ± 379; FR: 3555 ± 211 mmHg/s, P > 0.05), and developed pressure (in vitro) at diastolic pressure of zero (control: 152 ± 16; FR: 149 ± 15 mmHg, N = 9, P > 0.05) and 25 mmHg (control: 155 ± 9; FR: 150 ± 10 mmHg, N = 9, P > 0.05). FR also induced eccentric ventricular remodeling, and reduced myocardial elasticity (control: 10.9 ± 1.6; FR: 9.2 ± 0.9%, N = 9, P < 0.05) and LV compliance (control: 82.6 ± 16.5; FR: 68.2 ± 9.1%, N = 9, P < 0.05). We conclude that FR causes systolic ventricular dysfunction without in vitro change in myocardial contractility and diastolic dysfunction probably due to a reduction in myocardial elasticity.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background: Regardless significant therapeutic advances, mortality and morbidity after myocardial infarction (MI) are still high. For a long time, the importance of right ventricle (RV) function has been neglected. Recently, RV dysfunction has also been associated with poor outcomes in the setting of heart failure. The shape, location, and contraction conditions make the RV chamber assessment technically challenging.Methods: Our study identified clinical characteristics and left ventricle (LV) echocardiographic data performed 3-5 days after MI that could be associated with RV dysfunction (RV fractional area change [FAC] < 35%) 6 months after MI.Results: The RV dysfunction group consisted of 11 patients (RV FAC 29.4% +/- 5.2) and the no RV dysfunction group of 71 patients (RV FAC 43.7% +/- 5.1); (P < 0.001). Both groups presented the same baseline clinical characteristics. Left atrium (LA), interventricular septum (IVS), and left ventricular posterior wall (LVPW) were larger in RV dysfunction than in no RV dysfunction. Conversely, E wave deceleration time (EDT) was lower in RV dysfunction when compared with no RV dysfunction. Left atrium(adj) (adjusted by gender, age, infarct size, and body mass index) (odds ratio [OR], 1.22; confidence interval [CI], 1.016-1.47; P = 0.032), interventricular septum(adj) (OR, 1.49; CI, 1.01-2.23; P = 0.044), and E wave deceleration time(adj) (OR, 0.98; CI, 0.97-0.98; P = 0.029) assessed soon after MI predicted RV failure after 6-months.Conclusions: LV diastolic dysfunction, resulting from anterior MI and assessed 3-5 days after the event, may play an important role in predicting RV dysfunction 6 months later.
Resumo:
Objective: Diastolic dysfunction (DD) is a frequent condition in hypertensive patients whose presence increases mortality and whose treatment remains unclear. The aim of this study was to investigate in a prospective, double-blinded, placebo-controlled randomized design the additive effect of simvastatin on DD in enalapril-treated hypertensive patients with average cholesterol levels. Methods: Hypertensive patients with DD and LDL-cholesterol <160 mg/dL underwent a run-in phase to achieve a systolic blood pressure (SBP) <135 mmHg and diastolic blood pressure (DBP) <85 mmHg with enalapril. Hydrochlorothiazide was added when need to achieve blood pressure control. Four weeks after reaching the optimum anti-hypertensive regimen patients were randomized to receive 80 mg simvastatin (n = 27) or placebo (n = 28) for a period of 20 weeks. Echocardiograms were performed before and after treatment with measurement of maximum left atrial volume (LAV), conventional and tissue Doppler velocities in early diastole (E, e') and late diastole (A, a'). Results: After 20 weeks, the simvastatin group presented reduction in SBP (-4 +/- 2 mmHg, p = 0.02), increase in E/A ratio (1.0 +/- 0.05 to 1.2 +/- 0.06, p = 0.03) and decrease of LAV indexed to body surface area (24.5 +/- 0.9 to 21.1 +/- 0.8 ml/m(2), p = 0.048), as compared with placebo arm. No change in systolic function and no correlation between the E/A ratio, LAV and changes in blood pressure or lipid profile were observed. Conclusions: The addition of simvastatin to enalapril in hypertensive patients with average cholesterol levels improves parameters of diastolic function independently of changes in blood pressure or cholesterol. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Abstract Background Because cardiomyopathy is the leading cause of death in diabetic patients, the determination of myocardial function in diabetes mellitus is essential. In the present study, we provide an integrated approach, using noninvasive echocardiography and invasive hemodynamics to assess early changes in myocardial function of diabetic rats. Methods Diabetes was induced by streptozotocin injection (STZ, 50 mg/kg). After 30 days, echocardiography (noninvasive) at rest and invasive left ventricular (LV) cannulation at rest, during and after volume overload, were performed in diabetic (D, N = 7) and control rats (C, N = 7). The Student t test was performed to compare metabolic and echocardiographic differences between groups at 30 days. ANOVA was used to compare LV invasive measurements, followed by the Student-Newman-Keuls test. Differences were considered significant at P < 0.05 for all tests. Results Diabetes impaired LV systolic function expressed by reduced fractional shortening, ejection fraction, and velocity of circumferential fiber shortening compared with that in the control group. The diabetic LV diastolic dysfunction was evidenced by diminished E-waves and increased A-waves and isovolumic relaxation time. The myocardial performance index was greater in diabetic compared with control rats, indicating impairment in diastolic and systolic function. The LV systolic pressure was reduced and the LV end-diastolic pressure was increased at rest in diabetic rats. The volume overload increased LVEDP in both groups, while LVEDP remained increased after volume overload only in diabetic rats. Conclusion These results suggest that STZ-diabetes induces systolic and diastolic dysfunction at rest, and reduces the capacity for cardiac adjustment to volume overload. In addition, it was also demonstrated that rodent echocardiography can be a useful, clinically relevant tool for the study of initial diabetic cardiomyopathy manifestations in asymptomatic patients.
Resumo:
Assisted reproductive technologies (ART) predispose the offspring to vascular dysfunction, arterial hypertension, and hypoxic pulmonary hypertension. Recently, cardiac remodeling and dysfunction during fetal and early postnatal life have been reported in offspring of ART, but it is not known whether these cardiac alterations persist later in life and whether confounding factors contribute to this problem. We, therefore, assessed cardiac function and pulmonary artery pressure by echocardiography in 54 healthy children conceived by ART (mean age 11.5 ± 2.4 yr) and 54 age-matched (12.2 ± 2.3 yr) and sex-matched control children. Because ART is often associated with low birth weight and prematurity, two potential confounders associated with cardiac dysfunction, only singletons born with normal birth weight at term were studied. Moreover, because cardiac remodeling in infants conceived by ART was observed in utero, a situation associated with increased right heart load, we also assessed cardiac function during high-altitude exposure, a condition associated with hypoxic pulmonary hypertension-induced right ventricular overload. We found that, while at low altitude cardiac morphometry and function was not different between children conceived by ART and control children, under the stressful conditions of high-altitude-induced pressure overload and hypoxia, larger right ventricular end-diastolic area and diastolic dysfunction (evidenced by lower E-wave tissue Doppler velocity and A-wave tissue Doppler velocity of the lateral tricuspid annulus) were detectable in children and adolescents conceived by ART. In conclusion, right ventricular dysfunction persists in children and adolescents conceived by ART. These cardiac alterations appear to be related to ART per se rather than to low birth weight or prematurity.