866 resultados para Developmental genetics
Resumo:
In order to identify new regulators of Schwann cell myelination potentially playing a role in peripheral nervous system (PNS) pathologies, we analysed gene expression profiling data from three mouse models of demyelinating neuropathies and from the developing PNS. This analysis revealed that Sox4, which encodes a member of the Sry-related high-mobility group box protein family, was consistently upregulated in all three analysed models of neuropathy. Moreover, Sox4 showed a peak in its expression during development that corresponded with the onset of myelination. To gain further insights into the role of Sox4 in PNS development, we generated a transgenic mouse that specifically overexpresses Sox4 in Schwann cells. Sox4 overexpression led to a temporary delay in PNS myelination without affecting axonal sorting. Importantly, we observed that, whereas Sox4 mRNA could be efficiently overexpressed, Sox4 protein expression in Schwann cells was strictly regulated. Finally, our data showed that enforced expression of Sox4 in the mouse model for Charcot-Marie-Tooth 4C aggravated its neuropathic phenotype. Together, these observations reveal that Sox4 contributes to the regulation of Schwann cell myelination, and also indicates its involvement in the pathophysiology of peripheral neuropathies.
Resumo:
During development, multicellular organisms determine and then differentiate regions that constitute the body's architecture. These regions are established and controlled by a number of molecules, including nuclear factors, that drive the organism from the egg to its final shape. We studied the molecules involved in the regionalisation of the freshwater planarian body (Platyhelminthes, Turbelleria, Tricladida).
Resumo:
The origin and evolution of the complex regulatory landscapes of some vertebrate developmental genes, often spanning hundreds of Kbp and including neighboring genes, remain poorly understood. The Sonic Hedgehog (Shh) genomic regulatory block (GRB) is one of the best functionally characterized examples, with several discrete enhancers reported within its introns, vast upstream gene-free region and neighboring genes (Lmbr1 and Rnf32). To investigate the origin and evolution of this GRB, we sequenced and characterized the Hedgehog (Hh) loci from three invertebrate chordate amphioxus species, which share several early expression domains with Shh. Using phylogenetic footprinting within and between chordate lineages, and reporter assays in zebrafish probing >30 Kbp of amphioxus Hh, we report large sequence and functional divergence between both groups. In addition, we show that the linkage of Shh to Lmbr1 and Rnf32, necessary for the unique gnatostomate-specific Shh limb expression, is a vertebrate novelty occurred between the two whole-genome duplications.
Resumo:
Background In most eumetazoans studied so far, Hox genes determine the identity of structures along the main body axis. They are usually linked in genomic clusters and, in the case of the vertebrate embryo, are expressed with spatial and temporal colinearity. Outside vertebrates, temporal colinearity has been reported in the cephalochordate amphioxus (the least derived living relative of the chordate ancestor) but only for anterior and central genes, namely Hox1 to Hox4 and Hox6. However, most of the Hox gene expression patterns in amphioxus have not been reported. To gain global insights into the evolution of Hox clusters in chordates, we investigated a more extended expression profile of amphioxus Hox genes. Results Here we report an extended expression profile of the European amphioxus Branchiostoma lanceolatum Hox genes and describe that all Hox genes, except Hox13, are expressed during development. Interestingly, we report the breaking of both spatial and temporal colinearity for at least Hox6 and Hox14, which thus have escaped from the classical Hox code concept. We show a previously unidentified Hox6 expression pattern and a faint expression for posterior Hox genes in structures such as the posterior mesoderm, notochord, and hindgut. Unexpectedly, we found that amphioxus Hox14 had the most divergent expression pattern. This gene is expressed in the anterior cerebral vesicle and pharyngeal endoderm. Amphioxus Hox14 expression represents the first report of Hox gene expression in the most anterior part of the central nervous system. Nevertheless, despite these divergent expression patterns, amphioxus Hox6 and Hox14 seem to be still regulated by retinoic acid. Conclusions Escape from colinearity by Hox genes is not unusual in either vertebrates or amphioxus and we suggest that those genes escaping from it are probably associated with the patterning of lineage-specific morphological traits, requiring the loss of those developmental constraints that kept them colinear.
Resumo:
Letter to the Editor on Wang M, Wang Q, Wang Z, Zhang X, Pan Y. The molecular evolutionary patterns of the insulin/FOXO signaling pathway
Resumo:
Animal olfactory systems have a critical role for the survival and reproduction of individuals. In insects, the odorant-binding proteins (OBPs) are encoded by a moderately sized gene family, and mediate the first steps of the olfactory processing. Most OBPs are organized in clusters of a few paralogs, which are conserved over time. Currently, the biological mechanism explaining the close physical proximity among OBPs is not yet established. Here, we conducted a comprehensive study aiming to gain insights into the mechanisms underlying the OBP genomic organization. We found that the OBP clusters are embedded within large conserved arrangements. These organizations also include other non-OBP genes, which often encode proteins integral to plasma membrane. Moreover, the conservation degree of such large clusters is related to the following: 1) the promoter architecture of the confined genes, 2) a characteristic transcriptional environment, and 3) the chromatin conformation of the chromosomal region. Our results suggest that chromatin domains may restrict the location of OBP genes to regions having the appropriate transcriptional environment, leading to the OBP cluster structure. However, the appropriate transcriptional environment for OBP and the other neighbor genes is not dominated by reduced levels of expression noise. Indeed, the stochastic fluctuations in the OBP transcript abundance may have a critical role in the combinatorial nature of the olfactory coding process.
Resumo:
Acoel flatworms are small marine worms traditionally considered to belong to the phylum Platyhelminthes. However, molecular phylogenetic analyses suggest that acoels are not members of Platyhelminthes, but are rather extant members of the earliest diverging Bilateria. This result has been called into question, under suspicions of a long branch attraction (LBA) artefact. Here we re-examine this problem through a phylogenomic approach using 68 different protein-coding genes from the acoel Convoluta pulchra and 51 metazoan species belonging to 15 different phyla. We employ a mixture model, named CAT, previously found to overcome LBA artefacts where classical models fail. Our results unequivocally show that acoels are not part of the classically defined Platyhelminthes, making the latter polyphyletic. Moreover, they indicate a deuterostome affinity for acoels, potentially as a sister group to all deuterostomes, to Xenoturbellida, to Ambulacraria, or even to chordates. However, the weak support found for most deuterostome nodes, together with the very fast evolutionary rate of the acoel Convoluta pulchra, call for more data from slowly evolving acoels (or from its sister-group, the Nemertodermatida) to solve this challenging phylogenetic problem.
Resumo:
The genome of the bladderwort Utricularia gibba provides an unparalleled opportunity to uncover the adaptive landscape of an aquatic carnivorous plant with unique phenotypic features such as absence of roots, development of water-filled suction bladders, and a highly ramified branching pattern. Despite its tiny size, the U. gibba genome accommodates approximately as many genes as other plant genomes. To examine the relationship between the compactness of its genome and gene turnover, we compared the U. gibba genome with that of four other eudicot species, defining a total of 17,324 gene families (orthogroups). These families were further classified as either 1) lineage-specific expanded/contracted or 2) stable in size. The U. gibba-expanded families are generically related to three main phenotypic features: 1) trap physiology, 2) key plant morphogenetic/developmental pathways, and 3) response to environmental stimuli, including adaptations to life in aquatic environments. Further scans for signatures of protein functional specialization permitted identification of seven candidate genes with amino acid changes putatively fixed by positive Darwinian selection in the U. gibba lineage. The Arabidopsis orthologs of these genes (AXR, UMAMIT41, IGS, TAR2, SOL1, DEG9, and DEG10) are involved in diverse plant biological functions potentially relevant for U. gibba phenotypic diversification, including 1) auxin metabolism and signal transduction, 2) flowering induction and floral meristem transition, 3) root development, and 4) peptidases. Taken together, our results suggest numerous candidate genes and gene families as interesting targets for further experimental confirmation of their functional and adaptive roles in the U. gibba's unique lifestyle and highly specialized body plan.
Resumo:
An organism is built through a series of contingent factors, yet it is determined by historical, physical, and developmental constraints. A constraint should not be understood as an absolute obstacle to evolution, as it may also generate new possibilities for evolutionary change. Modularity is, in this context, an important way of organizing biological information and has been recognized as a central concept in evolutionary biology bridging on developmental, genetics, morphological, biochemical, and physiological studies. In this article, we explore how modularity affects the evolution of a complex system in two mammalian lineages by analyzing correlation, variance/covariance, and residual matrices (without size variation). We use the multivariate response to selection equation to simulate the behavior of Eutheria and Metharia skulls in terms of their evolutionary flexibility and constraints. We relate these results to classical approaches based on morphological integration tests based on functional/developmental hypotheses. Eutherians (Neotropical primates) showed smaller magnitudes of integration compared with Metatheria (didelphids) and also skull modules more clearly delimited. Didelphids showed higher magnitudes of integration and their modularity is strongly influenced by within-groups size variation to a degree that evolutionary responses are basically aligned with size variation. Primates still have a good portion of the total variation based on size; however, their enhanced modularization allows a broader spectrum of responses, more similar to the selection gradients applied (enhanced flexibility). Without size variation, both groups become much more similar in terms of modularity patterns and magnitudes and, consequently, in their evolutionary flexibility. J. Exp. Zool. (Mol. Dev. Evol.) 314B:663-683, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Five permanent cell lines were developed from Xiphophorus maculatus, X. helleri, and their hybrids using three tissue sources, including adults and embryos of different stages. To evaluate cell line gene expression for retention of either tissue-of-origin-specific or ontogenetic stage-specific characters, the activity distribution of 44 enzyme loci was determined in 11 X. maculatus tissues, and the developmental genetics of 17 enzyme loci was charted in X. helleri and in helleri x maculatus hybrids using starch gel electrophoresis. In the process, eight new loci were discovered and characterized for Xiphophorus.^ No Xiphophorus cell line showed retention of tissue-of-origin-specific or ontogenetic stage-specific enzyme gene expressional traits. Instead, gene expression was similar among the cell lines. One enzyme, adenosine deaminase (ADA) was an exception. Two adult-origin cell lines expressed ADA, whereas, three cell lines derived independently from embryos did not. ADA('-) expression of Xiphophorus embryo-derived cell lines may represent retention of an embryonic gene expressional trait. In one cell line (T(,3)) derived from 13 pooled interspecific hybrid (F(,2)) embryos, shifts with time were observed at enzyme loci polymorphic between the two species. This suggested shifts in ratios of cells of different genotypes in the population rather than unstable gene expression in one dominant cell type.^ Verification of this hypothesis was attempted by cloning the culture--seeking clones having different genetic signatures. The large number of loci electrophoretically polymorphic between the two species and whose alleles segregated independently into the 13 progeny from which this culture originated almost guaranteed the presence of different genetic signatures (lineages) in T(,3).^ Seven lineages of cells were found within T(,3), each expressing genotypes at some loci not characteristic of the expression of the culture-as-a-whole, supporting the hypothesis tested. Quantitative studies of ADA expression in the whole culture (ADA('-)) and in clones of these seven lineages suggested the predominance in T(,3) of ADA deficient cell lineages, although moderate to high ADA output clones also occurred. Thus, T(,3) has the potential to shift phenotypes from ADA('-) to ADA('+) by simply changing proportions of its constituent cell types, demonstrating that such shifts can occur in any cell culture containing cells of mixed expressional characteristics.^
Resumo:
Genetic screens in Drosophila have lead to the discovery of many genes important for patterning and signal transduction in diverse organisms. Traditionally, the phenotypic effects of loss-of-function mutations are analyzed. As an alternative way to link genes and function, I have developed a versatile misexpression screen in Drosophila, the first such screen in higher eukaryotes. The screen identifies genes that, when over- or misexpressed in a pattern of interest, give a specific phenotype or modulate an existing mutant phenotype. It is based on Gal4 transactivation of a mobile enhancer and promoter that "targets" random endogenous genes for expression. The modular design of the screen allows directed expression in any temporal or spatial pattern. When activated in the developing eye, 4% of target inserts gave dominant phenotypes. One insertion was in the gene encoding Ras GTPase-activating protein; its overexpression phenotype was strongly enhanced by a mutation in Ras1. Thus, biologically relevant phenotypes and genetic interactions are identified using this method. The screen is a powerful new tool for developmental genetics; similar approaches can also be developed for other organisms.
Resumo:
The Sonic Hedgehog (Shh) signalling pathway plays a central role in the development of the skin and hair follicle and is a major determinant of skin tumorigenesis, most notably of basal cell carcinoma (BCC). Various mouse models involving either ablation or overexpression of key members of the Shh signalling pathway display a range of skin tumours. To further examine the role of Shh in skin development. we have overexpressed Shh in a subset of interfollicular basal cells from 12.5 dpc under the control of the human keratin 1 (HK1) promoter. The HK1-Shh transgenic mice display a range of skin anomalies, including highly pigmented inguinal lesions and regions of alopecia. The most striking hair follicle phenotype is a suppression in embryonic follicle development between 14.0 and 19.0 dpc, resulting in a complete absence of guard, awl, and auchene hair fibres. These data indicate that alternative signals are responsible for the development of different hair follicles and point to a major role of Shh signalling in the morphogenesis of guard, awl, and auchene hair fibres. Through a comparison with other mouse models, the characteristics of the HK1-Shh transgenic mice suggest that the precise timing and site of Shh expression are key in dictating the resultant skin and tumour phenotype. 2003 Elsevier Inc. All rights reserved.
Resumo:
We identified a transcript named 11M2 on the basis of its strong male-specific expression pattern in the developing mouse gonad. 11M2 was found to be expressed by gonad primordial germ cells (PGCs) of both sexes and down-regulated in female PGCs as they enter prophase I of the first meiotic division, similar to the expression of Oct4. Mouse EST analysis revealed expression only in early-stage embryos, embryonic stem cells and pre-meiotic germ cells. 11M2 corresponds to a recently reported gene variously known as PGC7, stella or Dppa3. We have identified the human orthologue of Dppa3 and find by human EST analysis that it is expressed in human testicular germ cell tumours but not in normal human somatic tissues. The expression patterns of mouse and human DPPA3, in undifferentiated embryonic cells, embryonic germ cells and adult germ cell tumours, together suggest a role for this gene in maintaining cell pluripotentiality.
Resumo:
Proper organ patterning depends on a tight coordination between cell proliferation and differentiation. The patterning of Drosophila retina occurs both very fast and with high precision. This process is driven by the dynamic changes in signaling activity of the conserved Hedgehog (Hh) pathway, which coordinates cell fate determination, cell cycle and tissue morphogenesis. Here we show that during Drosophila retinogenesis, the retinal determination gene dachshund (dac) is not only a target of the Hh signaling pathway, but is also a modulator of its activity. Using developmental genetics techniques, we demonstrate that dac enhances Hh signaling by promoting the accumulation of the Gli transcription factor Cubitus interruptus (Ci) parallel to or downstream of fused. In the absence of dac, all Hh-mediated events associated to the morphogenetic furrow are delayed. One of the consequences is that, posterior to the furrow, dac- cells cannot activate a Roadkill-Cullin3 negative feedback loop that attenuates Hh signaling and which is necessary for retinal cells to continue normal differentiation. Therefore, dac is part of an essential positive feedback loop in the Hh pathway, guaranteeing the speed and the accuracy of Drosophila retinogenesis.
Resumo:
Animal cloning has been associated with developmental abnormalities, with the level of heteroplasmy caused by the procedure being one of its potential limiting factors. The aim of this study was to determine the effect of the fusion of hemicytoplasts or aggregation of hemiembryos, varying the final cytoplasmic volume, on development and cell density of embryos produced by hand-made cloning (HMC), parthenogenesis or by in vitro fertilization (IVF). One or two enucleated hemicytoplasts were paired and fused with one skin somatic cell. Activated clone and zona-free parthenote embryos and hemiembryos were in vitro cultured in the well-of-the-well (WOW) system, being allocated to one of six experimental groups, on a per WOW basis: single clone or parthenote hemiembryos (1 x 50%); aggregation of two (2 x 50%), three (3 x 50%), or four (4 x 50%) clone or parthenote hemiembryos; single clone or parthenote embryos (1 x 100%); or aggregation of two clone or parthenote embryos (2 x 100%). Control zona-intact parthenote or IVF embryos were in vitro cultured in four-well dishes. Results indicated that the increase in the number of aggregated structures within each WOW was followed by a linear increase in cleavage, blastocyst rate, and cell density. The increase in cytoplasmic volume, either by fusion or by aggregation, had a positive effect on embryo development, supporting the establishment of pregnancies and the birth of a viable clone calf after transfer to recipients. However, embryo aggregation did not improve development on a hemicytoplast basis, except for the aggregation of two clone embryos.